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Circuit analysis is not only fundamental to the entire breadth of electrical and computer To the Stud e@
engineering—the concepts studied here extend far beyond those boundaries. For this reason,
it remains the starting point for many future engineers who wish to work in this field. The text
and all the supplementary materials associated with it will aid you in reaching this goal. We
strongly recommend while you are here to read the Preface closely and view all the resources
available to you as a learner. One last piece of advice: Learning to analyze electric circuits is
like learning to play a musical instrument. Most people take music lessons as a starting point.
Then, they become proficient through practice, practice, and more practice. Lessons on circuit
analysis are provided by your instructor and this textbook. Proficiency in circuit analysis can
only be obtained through practice. Take advantage of the many opportunities throughout this
textbook to practice, practice, and practice. In the end, you’ll be thankful you did.

The Eleventh Edition has been prepared based on a careful examination of feedback received To t
from instructors and students. The revisions and changes made should appeal to a wide vari- Instructo
ety of instructors. We are aware of significant changes taking place in the way this material is
being taught and learned. Consequently, the authors and the publisher have created a formi-
dable array of traditional and nontraditional learning resources to meet the needs of students
and teachers of modern circuit analysis.

By design, the book contains an enormous number of end-of-chapter problems that
provide significant advantages for the instructor. As a time-saving measure, the instruc-
tor can use this bank of problems to select both homework problems and exam questions,
term after term, without repetition. Dedicated students will find this problem set, typically
graduated in difficulty, an excellent resource for testing their understanding on a range of
problems.

Flipping the classroom has risen recently as an alternative mode of instruction, which
attempts to help the student grasp the material quicker. Studies to date have shown that
this mode also tends to minimize instructor office time. This book, with its combination of
Learning Assessments, problem-solving videos, and WileyPLUS software, is an ideal vehicle
for teaching in this format. These resources provide the instructor with the tools necessary to
modify the format of the presentation in the hope of enhancing the student’s rapid understand-
ing of the material.

Engineering educators have long recognized that coupling traditional lecture courses
with laboratory experiences enhances student interest and learning. The trend in hands-on
learning has been spurred by the development of inexpensive USB-powered instruments
and inexpensive portable laboratory kits that allow the student to explore electrical theory
in environments that vary from a traditional laboratory classroom to an environment where
the experiments can be performed anywhere at any time. Research has shown that students
gain a deeper understanding of abstract theoretical concepts when the concepts are applied in
practical circuits. The response of students, both male and female, to hands-on learning with
such kits has been overwhelmingly positive. New to this edition, a list of such experiments is
provided at the beginning of each chapter. The experiments, which demonstrate some of the
concepts introduced in the chapters, can be conducted under the guidance of an instructor or
independently.

In accordance with the earlier editions, the book contains a plethora of examples that are
designed to help the student grasp the salient features of the material quickly. A number of
new examples have been introduced, and MATLAB® has been employed, where appropriate,
to provide a quick and easy software solution as a means of comparison, as well as to check
on other solution techniques.
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@xt Pedagogy

A four-color design is employed to enhance and clarify both text and illustrations. This
sharply improves the pedagogical presentation, particularly with complex illustrations.
For example, see Figure 2.5 on page 30.

e End-of-chapter homework problems have been substantially revised and augmented.
There are now approximately 1,400 problems in the Eleventh Edition, of which over
400 are new! Multiple-choice Fundamentals of Engineering (FE) Exam problems also
appear at the end of each chapter.

e Problem-solving videos (PSVs) have been created, showing students step by step how
to solve all Learning Assessment problems within each chapter. This is a special fea-
ture that should significantly enhance the learning experience for each subsection in a
chapter.

e In order to provide maximum flexibility, online supplements contain solutions to exam-
ples in the book using MATLAB, PSpice®, or MultiSim®. The worked examples can
be supplied to students as digital files, or one or more of them can be incorporated into
custom print editions of the text, depending on the instructor’s preference.

e Problem-Solving Strategies have been retained in the Eleventh Edition. They are uti-
lized as a guide for the solutions contained in the PSVs.

e The WileyPLUS resources have been greatly updated and expanded, with additional
algorithmic problems, PSVs, and much more. Reading Quiz questions give instructors
the opportunity to track student reading and measure their comprehension. Math Skills
Assessments provide faculty with tools to assess students’ mastery of essential math-
ematical concepts. Not only can faculty measure their students’ math comprehension at
the beginning of the term, they also now have resources to which they can direct stu-
dents to reinforce areas where they need to upgrade their skills.

» Experiments are paired with each chapter so that students can see in action the concepts
discussed in the chapter through the use of both predefined physical circuits and inde-
pendent design projects.

This text is suitable for a one-semester, a two-semester, or a three-quarter course sequence.
The first seven chapters are concerned with the analysis of dc circuits. An introduction to
operational amplifiers is presented in Chapter 4. This chapter may be omitted without any
loss of continuity. Chapters 8 to 12 are focused on the analysis of ac circuits, beginning with
the analysis of single-frequency circuits (single-phase and three-phase) and ending with
variable-frequency circuit operation. Calculation of power in single-phase and three-phase ac
circuits is also presented. The important topics of the Laplace transform and Fourier trans-
form are covered in Chapters 13 to 15.

The organization of the text provides instructors maximum flexibility in designing their
courses. One instructor may choose to cover the first seven chapters in a single semester,
while another may omit Chapter 4 and cover Chapters 1 to 3 and 5 to 8. Other instructors have
chosen to cover Chapters 1 to 3, 5 to 6, and section 7.1, and then cover Chapters 8 and 9. The
remaining chapters can be covered in a second semester course.

The pedagogy of this text is rich and varied. It includes print and media, and much thought
has been put into integrating its use. To gain the most from this pedagogy, please review the
following elements commonly available in most chapters of this book.

Learning Objectives are provided at the outset of each chapter. This tabular list tells the
reader what is important and what will be gained from studying the material in the chapter.

Experiments that reinforce the learning objectives are listed with brief descriptions of what
the student will gain by performing each experiment. Most experiments also involve simulat-
ing the circuit with computer software to verify/predict correct operation.



Examples are the mainstay of any circuit analysis text, and numerous examples have always
been a trademark of this textbook. These examples provide a more graduated level of presen-
tation with simple, medium, and challenging examples.

Hints can often be found in the page margins. They facilitate understanding and serve as
reminders of key issues. See, for example, page 9.

Learning Assessments are a critical learning tool in this text. These exercises test the cumu-
lative concepts to that point in a given section or sections. Not only is the answer provided,
but a problem-solving video accompanies each of these exercises, demonstrating the solu-
tion in step-by-step detail. The student who masters these is ready to move forward. See, for
example, page 11.

Problem-Solving Strategies are step-by-step problem-solving techniques that many students
find particularly useful. They answer the frequently asked question, “Where do I begin?”
Nearly every chapter has one or more of these strategies, which are a kind of summation on
problem solving for concepts presented. See, for example, page 44.

Problems have been greatly revised for the Eleventh Edition. This edition has over 400 new
problems of varying depth and level. Any instructor will find numerous problems appropriate
for any level class. There are approximately 1,400 problems in the Eleventh Edition! Included
with the problems are FE Exam Problems for each chapter. If you plan on taking the FE
Exam, these problems closely match problems you will typically find on the FE Exam.

Circuit Simulation and Analysis Software represents a fundamental part of engineering
circuit design today. Software such as PSpice, MultiSim, and MATLAB allow engineers
to design and simulate circuits quickly and efficiently. As an enhancement with enormous
flexibility, all three of these software packages can be employed in the Eleventh Edition. In
each case, online supplements are available that contain the solutions to numerous examples
in each of these software programs. Instructors can opt to make this material available online
or as part of a customized print edition, making this software an integral and effective part of
the presentation of course material.

The rich collection of material that is provided for this edition offers a distinctive and helpful
way for exploring the book’s examples and exercises from a variety of simulation techniques.

WileyPLUS is an innovative, research-based, online environment for effective teaching and
learning.

WHAT DO STUDENTS RECEIVE WITH WILEYPLUS? A Research-Based Design:
WileyPLUS provides an online environment that integrates relevant resources, including
the entire digital textbook, in an easy-to-navigate framework that helps students study more
effectively.

e WileyPLUS adds structure by organizing textbook content into smaller, more manage-
able “chunks.”

¢ Related media, examples, and sample practice items reinforce the learning objectives.

e Innovative features such as calendars, visual progress tracking, and self-evaluation tools

improve time management and strengthen areas of weakness.

One-on-One Engagement. With WileyPLUS, students receive 24/7 access to resources that
promote positive learning outcomes. Students engage with related examples (in various
media) and sample practice items, including:

¢ FE Exam Questions

e Reading Quiz Questions

PREFACE Xi
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e Circuit Solutions

e Learning Assessments

e Math Skills Assessments

Measurable Outcomes: Throughout each study session, students can assess their progress and
gain immediate feedback. WileyPLUS provides precise reporting of strengths and weaknesses,

as well as individualized quizzes, so that students are confident that they are spending their time
on the right things. With WileyPLUS, students always know the exact outcome of their efforts.

WHAT DO INSTRUCTORS RECEIVE WITH WILEYPLUS? WileyPLUS provides reli-
able, customizable resources that reinforce course goals inside and outside of the classroom, as
well as visibility into individual student progress. Precreated materials and activities help instruc-
tors optimize their time.

Customizable Course Plan: WileyPLUS comes with a precreated course plan designed by a sub-
ject matter expert uniquely for this course. Simple drag-and-drop tools make it easy to assign the
course plan as-is or modify it to reflect your course syllabus.
Precreated Activity Types include:
¢ Questions
e Readings and Resources
e Presentation
e Print Tests
*  Concept Mastery

Course Materials and Assessment Content:

e Lecture Notes

e PowerPoint Slides

e Image Gallery

e Instructor’s Manual

e Gradable Reading Assignment Questions (embedded with online text)

¢ Question Assignments: All end-of-chapter problems are coded algorithmically with hints,

links to text, whiteboard/show work feature, and instructor-controlled problem-solving help.

Gradebook: WileyPLUS provides instant access to reports on trends in class performance, stu-
dent use of course materials, and progress toward learning objectives, helping inform decisions
and drive classroom discussions.

Learn more about WileyPLUS at www.wileyplus.com.

Powered by proven technology and built on a foundation of cognitive research, WileyPLUS has
enriched the education of millions of students in more than 20 countries.

The supplements list is extensive and provides instructors and students with a wealth of tradi-
tional and modern resources to match different learning needs.

Problem-Solving Videos are offered again in the Eleventh Edition in an iPod-compatible
format. The videos provide step-by-step solutions to Learning Assessments. Videos for Learning
Assessments will follow directly after a chapter feature called Problem-Solving Strategy.
Students who have used these videos with past editions have found them to be very helpful.

The Solutions Manual for the Eleventh Edition has been completely redone, checked, and
double-checked for accuracy. Although it is hand-written to avoid typesetting errors, it is the most


http://www.wileyplus.com

accurate solutions manual ever created for this textbook. Qualified instructors who adopt the text
for classroom use can download it off Wiley’s Instructor Companion Site.

PowerPoint Lecture Slides are an especially valuable supplementary aid for some instructors.
While most publishers make only figures available, these slides are true lecture tools that sum-
marize the key learning points for each chapter and are easily editable in PowerPoint. The slides
are available for download from Wiley’s Instructor Companion Site for qualified adopters.

Lab-in-a-Box: Introductory Experiments in Electric Circuits is a collection of laboratory exper-
iments made available within WileyPLUS or as a companion publication. The experiments have
been designed for a range of instructional settings, from traditional laboratory classes through
at-home experimentation. This allows the instructor to choose the instructional environment for
the experiments. Videos to support students as they perform the experiments are also available
in WileyPLUS.

Over the more than three decades that this text has been in existence, we estimate that more ACknowledgme

than one thousand instructors have used our book in teaching circuit analysis to hundreds of
thousands of students. As authors, there is no greater reward than having your work used by

so many. We are grateful for the confidence shown in our text and for the numerous evalua-
tions and suggestions from professors and their students over the years. This feedback has
helped us continuously improve the presentation. For this Eleventh Edition, we especially
thank Brandon Eidson and Elizabeth Devore with Auburn University for their assistance
with the solutions manual.

We were fortunate to have an outstanding group of faculty who has participated in reviews,

surveys, and focus groups for this edition:

Jorge Aravena, Louisiana State University

Cindy Barnicki, Milwaukee School of Engineering
Kurt Becker, Utah State University

Yugal Behl, CNM Community College

Christopher Bise, West Virginia University

April Bryan, Rose-Hulman

James Conrad, University of North Carolina—Charlotte
Roy Craig, University of Texas—Austin

Janak Dave, University of Cincinnati

Richard DuBroff, Missouri University of Science & Technology
Kim Fitzgerald, University of Illinois—Chicago
Manfred Hampe, TU Darmstadt

Melinda Holtzman, Portland State University

Bill Hornfeck, Lafayette College

Paul King, Vanderbilt University

Steve Krause, Arizona State University
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Janice Margle, Penn State University—Abington
Maditumi Mitra, University of Maryland
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ChapterQOne

THE LEARNING GOALS FOR THIS
CHAPTER ARE THAT STUDENTS
SHOULD BE ABLE TO:

B Use appropriate Sl units and standard prefixes when
calculating voltages, currents, resistances, and powers.

B Explain the relationships between basic electrical
quantities: voltage, current, and power.

Use the appropriate symbols for independent and
dependent voltage and current sources.

Calculate the value of the dependent sources when
analyzing a circuit that contain independent and
dependent sources.

Calculate the power absorbed by a circuit element
using the passive sign convention.

EXPERIMENTS THAT HELP STUDENTS DEVELOP AN UNDERSTANDING OF BASIC ELECTRIC
CIRCUIT CONCEPTS ARE:

B Breadboard Basics: Learn the operation of a digital multimeter while mapping the connections on a breadboard via resistance
measurements.

B Resistance Tolerances: Measure the resistance of real resistors and apply statistical analysis to the experimental values to
explain nominal resistance and tolerance.

B Voltage Polarity and Direction of Current: Discover how dc currents and voltages are measured using a digital multimeter so
that the resulting power calculated follows the passive sign convention.




2 CHAPTER 1 e

@

System
of Units

(12

Basic
Quantities

BASIC CONCEPTS

The system of units we employ is the international system of units, the Systéme International
des Unités, which is normally referred to as the SI standard system. This system, which is
composed of the basic units meter (m), kilogram (kg), second (s), ampere (A), kelvin (K),
and candela (cd), is defined in all modern physics texts and therefore will not be defined here.
However, we will discuss the units in some detail as we encounter them in our subsequent
analyses.

The standard prefixes that are employed in SI are shown in Fig. 1.1. Note the decimal
relationship between these prefixes. These standard prefixes are employed throughout our
study of electric circuits.

Circuit technology has changed drastically over the years. For example, in the early 1960s
the space on a circuit board occupied by the base of a single vacuum tube was about the size
of a quarter (25-cent coin). Today that same space could be occupied by an Intel Pentium
integrated circuit chip containing 50 million transistors. These chips are the engine for a host
of electronic equipment.

F|gure 1 1 10*12 10*9 106 1073 1 103 106 109 1012
Standard Sl prefixes. |

pico (p) nano (n) micro () milli (m) kilo (k) mega (M) giga(G) tera(T)

Before we begin our analysis of electric circuits, we must define terms that we will employ.
However, in this chapter and throughout the book, our definitions and explanations will be as
simple as possible to foster an understanding of the use of the material. No attempt will be made
to give complete definitions of many of the quantities because such definitions are not only
unnecessary at this level but are often confusing. Although most of us have an intuitive concept
of what is meant by a circuit, we will simply refer to an electric circuit as an interconnection of
electrical components, each of which we will describe with a mathematical model.

The most elementary quantity in an analysis of electric circuits is the electric charge. Our
interest in electric charge is centered around its motion, since charge in motion results in an
energy transfer. Of particular interest to us are those situations in which the motion is confined
to a definite closed path.

An electric circuit is essentially a pipeline that facilitates the transfer of charge from
one point to another. The time rate of change of charge constitutes an electric current.
Mathematically, the relationship is expressed as

2
=210 & p= f ke 11
dt -
where i and g represent current and charge, respectively (lowercase letters represent time
dependency, and capital letters are reserved for constant quantities). The basic unit of current

is the ampere (A), and 1 ampere is 1 coulomb per second.

Although we know that current flow in metallic conductors results from electron motion,
the conventional current flow, which is universally adopted, represents the movement of positive
charges. It is important that the reader think of current flow as the movement of positive
charge regardless of the physical phenomena that take place. The symbolism that will be used
to represent current flow is shown in Fig. 1.2. I, = 2 A'in Fig. 1.2a indicates that at any point
in the wire shown, 2 C of charge pass from left to right each second. I, = —3 A in Fig. 1.2b
indicates that at any point in the wire shown, 3 C of charge pass from right to left each second.
Therefore, it is important to specify not only the magnitude of the variable representing the
current but also its direction.

The two types of current that we encounter often in our daily lives, alternating current (ac)
and direct current (dc), are shown as a function of time in Fig. 1.3. Alternating current is the
common current found in every household and is used to run the refrigerator, stove, washing
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Figure 1.2 I, =2A
Conventional current flow: -
(a) positive current flow;

(b) negative current flow. W

i1 i)

(a) \ / -
\/ t t
L=-3A
W Figure 1.3
(b) Two common types of current: (a) alternating current (ac);

(b) direct current (dc).

machine, and so on. Batteries, which are used in automobiles and flashlights, are one source
of direct current. In addition to these two types of currents, which have a wide variety of uses,
we can generate many other types of currents. We will examine some of these other types
later in the book. In the meantime, it is interesting to note that the magnitude of currents in
elements familiar to us ranges from soup to nuts, as shown in Fig. 1.4.

We have indicated that charges in motion yield an energy transfer. Now we define the
voltage (also called the electromotive force, or potential) between two points in a circuit as
the difference in energy level of a unit charge located at each of the two points. Voltage is very
similar to a gravitational force. Think about a bowling ball being dropped from a ladder into
a tank of water. As soon as the ball is released, the force of gravity pulls it toward the bottom
of the tank. The potential energy of the bowling ball decreases as it approaches the bottom.
The gravitational force is pushing the bowling ball through the water. Think of the bowling
ball as a charge and the voltage as the force pushing the charge through a circuit. Charges in
motion represent a current, so the motion of the bowling ball could be thought of as a current.
The water in the tank will resist the motion of the bowling ball. The motion of charges in an
electric circuit will be impeded or resisted as well. We will introduce the concept of resistance
in Chapter 2 to describe this effect.

Work or energy, w(f) or W, is measured in joules (J); 1 joule is 1 newton meter (N-m).
Hence, voltage [v(f) or V] is measured in volts (V) and 1 volt is 1 joule per coulomb; that is,
1 volt = 1 joule per coulomb = 1 newton meter per coulomb. If a unit positive charge is
moved between two points, the energy required to move it is the difference in energy level
between the two points and is the defined voltage. It is extremely important that the variables

106 Figure 1.4
104 Lightning bolt Typical current magnitudes.
Large industrial motor current
102
Typical household appliance current
=z 109
v Causes ventricular fibrillation in humans
§ 1072
g— Human threshold of sensation
s 104
£
c 106
= Integrated circuit (IC) memory cell current
O 10-8
10-10
1012
Synaptic current (brain cell)
10-14
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Figure 1.5

Voltage representations.

(b)

used to represent voltage between two points be defined in such a way that the solution will
let us interpret which point is at the higher potential with respect to the other.

In Fig. 1.5a the variable that represents the voltage between points A and B has been
defined as V), and it is assumed that point A is at a higher potential than point B, as indicated
by the + and — signs associated with the variable and defined in the figure. The + and —
signs define a reference direction for V,. If V; = 2V, then the difference in potential of points
A and B is 2 'V and point A is at the higher potential. If a unit positive charge is moved from
point A through the circuit to point B, it will give up energy to the circuit and have 2 J less
energy when it reaches point B. If a unit positive charge is moved from point B to point A,
extra energy must be added to the charge by the circuit, and hence the charge will end up with
2 J more energy at point A than it started with at point B.

For the circuit in Fig. 1.5b, V, = —5 V means that the potential between points A and B is
5V and point B is at the higher potential. The voltage in Fig. 1.5b can be expressed as shown
in Fig. 1.5c. In this equivalent case, the difference in potential between points A and B is
V, = 5V, and point B is at the higher potential.

Note that it is important to define a variable with a reference direction so that the answer
can be interpreted to give the physical condition in the circuit. We will find that it is not
possible in many cases to define the variable so that the answer is positive, and we will also
find that it is not necessary to do so.

As demonstrated in Figs. 1.5b and c, a negative number for a given variable, for exam-
ple, V, in Fig. 1.5b, gives exactly the same information as a positive number; that is, V, in
Fig. 1.5¢c, except that it has an opposite reference direction. Hence, when we define either
current or voltage, it is absolutely necessary that we specify both magnitude and direction.
Therefore, it is incomplete to say that the voltage between two points is 10 V or the current in
aline is 2 A, since only the magnitude and not the direction for the variables has been defined.

The range of magnitudes for voltage, equivalent to that for currents in Fig. 1.4, is shown in
Fig. 1.6. Once again, note that this range spans many orders of magnitude.

At this point we have presented the conventions that we employ in our discussions
of current and voltage. Energy is yet another important term of basic significance. Let’s
investigate the voltage—current relationships for energy transfer using the flashlight shown in
Fig. 1.7. The basic elements of a flashlight are a battery, a switch, a light bulb, and connecting
wires. Assuming a good battery, we all know that the light bulb will glow when the switch is
closed. A current now flows in this closed circuit as charges flow out of the positive terminal
of the battery through the switch and light bulb and back into the negative terminal of the bat-
tery. The current heats up the filament in the bulb, causing it to glow and emit light. The light
bulb converts electrical energy to thermal energy; as a result, charges passing through the bulb
lose energy. These charges acquire energy as they pass through the battery as chemical energy
is converted to electrical energy. An energy conversion process is occurring in the flashlight as
the chemical energy in the battery is converted to electrical energy, which is then converted to
thermal energy in the light bulb.

Let’s redraw the flashlight as shown in Fig. 1.8. There is a current / flowing in this
diagram. Since we know that the light bulb uses energy, the charges coming out of the bulb
have less energy than those entering the light bulb. In other words, the charges expend energy
as they move through the bulb. This is indicated by the voltage shown across the bulb. The
charges gain energy as they pass through the battery, which is indicated by the voltage across
the battery. Note the voltage—current relationships for the battery and bulb. We know that
the bulb is absorbing energy; the current is entering the positive terminal of the voltage. For
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8 Figure 1.6
10 Lightning bolt g .
Typical voltage magnitudes.
106 High-voltage transmission lines
Voltage on a TV picture tube
104 L . .
arge industrial motors
ac outlet plug in U.S. households
_ 102
> Car battery
2 o Voltage on integrated circuits
g 10 Flashlight battery
£
S 10-2
= Voltage across human chest produced by the
S heart (EKG)
104
Voltage between two points on human scalp (EEG)
10-6
Antenna of a radio receiver
10-8
10-10

Figure 1.7
Flashlight circuit.

Light bulb
Figure 1.8
Flashlight circuit
with voltages and
current.
I
,
- Vbattery + + Vbulb -

the battery, the current is leaving the positive terminal, which indicates that energy is being
supplied.

This is further illustrated in Fig. 1.9, where a circuit element has been extracted from
a larger circuit for examination. In Fig. 1.9a, energy is being supplied o the element by
whatever is attached to the terminals. Note that 2 A—that is, 2 C of charge—are moving
from point A to point B through the element each second. Each coulomb loses 3 J of energy
as it passes through the element from point A to point B. Therefore, the element is absorb-
ing 6 J of energy per second. Note that when the element is absorbing energy, a positive
current enters the positive terminal. In Fig. 1.9b energy is being supplied by the element to
whatever is connected to terminals A-B. In this case, note that when the element is supplying
energy, a positive current enters the negative terminal and leaves via the positive terminal. In
this convention, a negative current in one direction is equivalent to a positive current in the
opposite direction, and vice versa. Similarly, a negative voltage in one direction is equivalent
to a positive voltage in the opposite direction.

(b)

Figure 1.9

Voltage—current rela-
tionships for (a) energy
absorbed and

(b) energy supplied.

5
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EXAMPLE 1.1
AN

SOLUTION

Suppose that your car will not start. To determine whether the battery is faulty, you turn on
the light switch and find that the lights are very dim, indicating a weak battery. You borrow
a friend’s car and a set of jumper cables. However, how do you connect his car’s battery to
yours? What do you want his battery to do?

Essentially, his car’s battery must supply energy to yours, and therefore it should be connected
in the manner shown in Fig. 1.10. Note that the positive current leaves the positive terminal
of the good battery (supplying energy) and enters the positive terminal of the weak battery
(absorbing energy). Note that the same connections are used when charging a battery.

Figure 1.10 I
Diagram for Example 1.1.

In practical applications, there are often considerations other than simply the electri-
cal relations (e.g., safety). Such is the case with jump-starting an automobile. Automobile
batteries produce explosive gases that can be ignited accidentally, causing severe physical
injury. Be safe—follow the procedure described in your auto owner’s manual.

0

o(t)

Figure 1.11

Sign convention for power.

'

Y
HINT
e Sive sign convention is

used to determine whether power
is being absorbed or supplied.

We have defined voltage in joules per coulomb as the energy required to move a positive
charge of 1 C through an element. If we assume that we are dealing with a differential amount
of charge and energy, then

_dw
v= - 1.2
Multiplying this quantity by the current in the element yields
—dofdg) _dv_
Y= g ( dr) = dr 13

which is the time rate of change of energy or power measured in joules per second, or watts (W).
Since, in general, both v and 7 are functions of time, p is also a time-varying quantity. Therefore,
the change in energy from time ¢, to time ¢, can be found by integrating Eq. (1.3); that is,

t t
Aw=£pdt=£vidt 14

At this point, let us summarize our sign convention for power. To determine the sign of
any of the quantities involved, the variables for the current and voltage should be arranged
as shown in Fig. 1.11. The variable for the voltage v(¢) is defined as the voltage across
the element with the positive reference at the same terminal that the current variable i(7) is
entering. This convention is called the passive sign convention and will be so noted in the
remainder of this book. The product of v and i, with their attendant signs, will determine the
magnitude and sign of the power. If the sign of the power is positive, power is being absorbed
by the element; if the sign is negative, power is being supplied by the element.
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Given the two diagrams shown in Fig. 1.12, determine whether the element is absorbing or
supplying power and how much.

4A —2A Figure 1.12
- _ ks + Elements for
2V 2V 2V 2v  Example 1.2.
+ —
+ —

(a) (b)

EXAMPLE 1.2
AA

In Fig. 1.12a, the power is P = (2 V)(—4 A) = —8 W. Therefore, the element is supplying power. SOLUTION

In Fig. 1.12b, the power is P = (2 V)(2 A) = —4 W. Therefore, the element is supplying power.

LEARNING ASSESSMENT

E1.1 Determine the amount of power absorbed or supplied by the elements in Fig. E1.1. ANSWER:
(a) P= —48 W,
(b) P =8 W.

Figure E1.1

We wish to determine the unknown voltage or current in Fig. 1.13.

=7 Figure 1.13
B Elements for
Vi= =-20W P=40W 5V Example 1.3.
+

(2)

EXAMPLE 1.3
AA

In Fig. 1.13a, a power of —20 W indicates that the element is delivering power. Therefore, the ~SOLUTION

current enters the negative terminal (terminal A), and from Eq. (1.3) the voltage is 4 V. Thus,

B is the positive terminal, A is the negative terminal, and the voltage between them is 4 V.

In Fig. 1.13b, a power of +40 W indicates that the element is absorbing power and,

therefore, the current should enter the positive terminal B. The current thus has a value of

—8 A, as shown in the figure.

LEARNING ASSESSMENT

E1.2 Determine the unknown variables in Fig. E1.2. ANSWER:
@V, =-20V,
(b)I=-5A.

I=2A
- P=40W + P=-50W [
10V 10V
=2
(b)

Figure E1.2 @
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(13

Circuit
Elements

Figure 1.14

Symbols for (a) independent
voltage source and (b) indepen-
dent current source.

Finally, it is important to note that our electrical networks satisfy the principle of conservation
of energy. Because of the relationship between energy and power, it can be implied that power
is also conserved in an electrical network. This result was formally stated in 1952 by B. D. H.
Tellegen and is known as Tellegen’s theorem—the sum of the powers absorbed by all elements in
an electrical network is zero. Another statement of this theorem is that the power supplied in a net-
work is exactly equal to the power absorbed. Checking to verify that Tellegen’s theorem is satisfied
for a particular network is one way to check our calculations when analyzing electrical networks.

Thus far, we have defined voltage, current, and power. In the remainder of this chapter we
will define both independent and dependent current and voltage sources. Although we will
assume ideal elements, we will try to indicate the shortcomings of these assumptions as we
proceed with the discussion.

In general, the elements we will define are terminal devices that are completely character-
ized by the current through the element and/or the voltage across it. These elements, which
we will employ in constructing electric circuits, will be broadly classified as being either
active or passive. The distinction between these two classifications depends essentially on
one thing—whether they supply or absorb energy. As the words themselves imply, an active
element is capable of generating energy and a passive element cannot generate energy.

However, later we will show that some passive elements are capable of storing energy.
Typical active elements are batteries and generators. The three common passive elements are
resistors, capacitors, and inductors.

In Chapter 2 we will launch an examination of passive elements by discussing the resistor in
detail. Before proceeding with that element, we first present some very important active elements.

1. Independent voltage source 3. Two dependent voltage sources

2. Independent current source 4. Two dependent current sources

INDEPENDENT SOURCES An independent voltage source is a two-terminal element
that maintains a specified voltage between its terminals regardless of the current through
it as shown by the v-i plot in Fig. 1.14a. The general symbol for an independent source, a
circle, is also shown in Fig. 1.14a. As the figure indicates, terminal A is v(#) volts positive
with respect to terminal B.

In contrast to the independent voltage source, the independent current source is a two-
terminal element that maintains a specified current regardless of the voltage across its
terminals, as illustrated by the v-i plot in Fig. 1.14b. The general symbol for an independent

o(t) i(r)

(a) (b)
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current source is also shown in Fig. 1.14b, where i(?) is the specified current and the arrow
indicates the positive direction of current flow.

In their normal mode of operation, independent sources supply power to the remainder of
the circuit. However, they may also be connected into a circuit in such a way that they absorb
power. A simple example of this latter case is a battery-charging circuit such as that shown
in Example 1.1.

It is important that we pause here to interject a comment concerning a shortcoming of the
models. In general, mathematical models approximate actual physical systems only under a
certain range of conditions. Rarely does a model accurately represent a physical system under
every set of conditions. To illustrate this point, consider the model for the voltage source in
Fig. 1.14a. We assume that the voltage source delivers v volts regardless of what is connected
to its terminals. Theoretically, we could adjust the external circuit so that an infinite amount of
current would flow, and therefore the voltage source would deliver an infinite amount of power.
This is, of course, physically impossible. A similar argument could be made for the independent
current source. Hence, the reader is cautioned to keep in mind that models have limitations and
thus are valid representations of physical systems only under certain conditions.

For example, can the independent voltage source be utilized to model the battery in an
automobile under all operating conditions? With the headlights on, turn on the radio. Do the
headlights dim with the radio on? They probably won’t if the sound system in your automo-
bile was installed at the factory. If you try to crank your car with the headlights on, you will
notice that the lights dim. The starter in your car draws considerable current, thus causing the
voltage at the battery terminals to drop and dimming the headlights. The independent voltage
source is a good model for the battery with the radio turned on; however, an improved model
is needed for your battery to predict its performance under cranking conditions.

9

Determine the power absorbed or supplied by the elements in the network in Fig. 1.15. EXAMPLE 1 .4
6V i ;
ik R —
I=2A etwork for Example 1.4.
— P N

=+ v
24V 18V HINT
N ements that are connected in

1= 2A series have the same current.

The current flow is out of the positive terminal of the 24-V source, and therefore this element SOLUTION
is supplying (2)(24) = 48 W of power. The current is into the positive terminals of elements

1 and 2, and therefore elements 1 and 2 are absorbing (2)(6) = 12 W and (2)(18) = 36 W,

respectively. Note that the power supplied is equal to the power absorbed.

LEARNING ASSESSMENT

E1.3 Find the power that is absorbed or supplied by the elements in Fig. E1.3. ANSWER:
Current source

I=3A * |ﬁ/| - supplies 36 W, element 1
L I=3A absorbs 54 W, and element 2
p - supplies 18 W.
2V 3A 6V
= +

Figure E1.3
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Figure 1.16

ig
Four different types of depend- ©
ent sources.
Vg v = Wog
O O

(a) (b)

iS
g i= 80g
O

(©) (C))

+0

+ 0

DEPENDENT SOURCES In contrast to the independent sources, which produce a
particular voltage or current completely unaffected by what is happening in the remainder of
the circuit, dependent sources generate a voltage or current that is determined by a voltage or
current at a specified location in the circuit. These sources are very important because they are
an integral part of the mathematical models used to describe the behavior of many electronic
circuit elements.

For example, metal-oxide-semiconductor field-effect transistors (MOSFETSs) and bipolar
transistors, both of which are commonly found in a host of electronic equipment, are modeled
with dependent sources, and therefore the analysis of electronic circuits involves the use of
these controlled elements.

In contrast to the circle used to represent independent sources, a diamond is used to
represent a dependent or controlled source. Fig. 1.16 illustrates the four types of depend-
ent sources. The input terminals on the left represent the voltage or current that controls
the dependent source, and the output terminals on the right represent the output current or
voltage of the controlled source. Note that in Figs. 1.16a and d, the quantities p and B are
dimensionless constants because we are transforming voltage to voltage and current to cur-
rent. This is not the case in Figs. 1.16b and c; hence, when we employ these elements a
short time later, we must describe the units of the factors r and g.

EXAMPLE 1 o 5 Given the two networks shown in Fig. 1.17, we wish to determine the outputs.
VAVAYAN

SOLUTION InFig. 1.17a, the output voltage is V, = pVsor V, = 20 V5 = (20)(2 V) = 40 V. Note that
the output voltage has been amplified from 2 V at the input terminals to 40 V at the output
terminals; that is, the circuit is a voltage amplifier with an amplification factor of 20.

Figure 1.17 Ig=1mA
O O
Circuits for Example 1.5. + ¥
Vg=2V 0V=V, V,
o o
(a

) (b)

In Fig. 1.17b, the output current is I, = By = (50)(1 mA) = 50 mA; that is, the circuit has
a current gain of 50, meaning that the output current is 50 times greater than the input current.




SECTION 1.3 « CIRCUIT ELEMENTS 11

LEARNING ASSESSMENT

E1.4 Determine the power supplied by the dependent sources in Fig. E1.4. ANSWER:
(a) Power supplied = 80 W;

Ig=4A (b) power supplied = 160 W.

I,=2A
o
+ +
V=4V 10 Vg 10V 41
o o

Figure E1.4 () (b)

Calculate the power absorbed by each element in the network of Fig. 1.18. Also verify that EXAMPLE ]. . 6
Tellegen’s theorem is satisfied by this network.

(A Figure 1.18

AT
|i| Circuit used in Example 1.6.

8V 4V
T 5]
A L L= T 1A
+
24v<+> 16v|:1:| 12v<+>
3A 1A 2A
Let’s calculate the power absorbed by each element using the sign convention for power. SOLUTION

P, =(16)1) =16 W
Py=@)(1) =4W
P;=(12)(1) =12 W
P,=(@8)2) =16 W
Py =(12)2) =24 W
Pyyy = (24)(=3) = -T2 W
Note that to calculate the power absorbed by the 24-V source, the current of 3 A flowing up
through the source was changed to a current —3 A flowing down through the 24-V source.
Let’s sum up the power absorbed by all elements: 16 + 4 + 12 + 16 +24 — 72 =0

This sum is zero, which verifies that Tellegen’s theorem is satisfied.
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EXAMPLE 1 . 7 Use Tellegen’s theorem to find the current 7, in the network in Fig. 1.19.

VAVAYAN
Figure 1.19 6v
- I.=2A
Circuit used in Example 1.7. D—=
_/
2A
L6V _nv,
] ]
7 S e gy ey SR
+
[3]1ov <j>4v <j> 81,
3af 8A

SOLUTION  First, we must determine the power absorbed by each element in the network. Using the sign
convention for power, we find

Py = (6)(=2) = —12W
P =), =6[,W
P, = (12)(=9) = —108 W
P;=(10)(—3) = =30 W

Pyy = @(=8) = -32W

Pps = (BL)(11) = (16) (11) =176 W

Applying Tellegen’s theorem yields
—12+ 61, — 108 =30 —32 + 176 =0

or
61, + 176 = 12 + 108 + 30 + 32

Hence,

LEARNING ASSESSMENTS

E1.5 Find the power that is absorbed or supplied by the circuit elements in the network in ANSWER:
Fig. E1.5. P,,v = 96 W supplied;
P, = 32 W absorbed;

P, = 64 W absorbed.

L8V
K
24V ax‘ 4l
Figure E1.5
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E1.6 Find the power that is absorbed or supplied by the network elements in Fig. E1.6.

1
g B
6V

ANSWER:

P,,v = 36 W supplied;
P,,v = 18 W absorbed;
P, = 4.5 W supplied;

P, = 9 W absorbed;

P, = 13.5 W absorbed.

13

E1.7 Find [, in Fig. E1.7 using Tellegen’s theorem.
1A 2A

)
N
>

25V

Figure E1.7

ANSWER:
I,= —2A.

The charge that enters the BOX is shown in Fig. 1.20. Calculate and sketch the current
flowing into and the power absorbed by the BOX between 0 and 10 milliseconds.

i(1)

12V BOX
q(1) (mC)
3_
2_
14—
5 6
| | | | |
i i i i i
1 2 3 4 7 8 9 10 t (ms)
_1 —
_2_
_3_

EXAMPLE 1.8

AUYAN

Figure 1.20

Diagrams for Example 1.8.
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Figure 1.21

Charge and current
waveforms for Example 1.8.

4q(®) (mC), (1) (A)

SOLUTION  Recall that current is related to charge by i(f) = % The current is equal to the slope of the

charge waveform.

i) =0 0=r=1ms
=3 _ =3
i = 3X10° Z1 X107 _ 5
2 X107°—1 X10
(=20 2=t=3ms
_ =3 _ =3
i) ==—22X10 "3 X107 _ 554
5 X107°—=3 X10~
i) =20 5=tr=6ms
-3 __(_ =3
i(t):2><10 _%( 2><1(33)
9 X107°—6 X10
i) =20 t=9ms

1=tr=2ms

3=tr=5ms

=1.33A 6=t=9ms

The current is plotted with the charge waveform in Fig. 1.21. Note that the current is zero
during times when the charge is a constant value. When the charge is increasing, the current
is positive, and when the charge is decreasing, the current is negative.

The power absorbed by the BOX is 12 X i(#).

p® =12(0)=0 0=t=1ms
p) =12(2) =24 W 1 <t=2ms
p® =12(0)=0 2=t=3ms
p@® =12(-25)= —30W 3=t=5ms
p() =12(0)=0 5=t=6ms
p() = 12(1.33) = 16 W 6=1=9ms
p®=12(0)=0 £=9ms

The power absorbed by the BOX is plotted in Fig. 1.22. For the time intervals, 1 = ¢ = 2 ms
and 6 = r = 9 ms, the BOX is absorbing power. During the time interval 3 = ¢ = 5 ms, the
power absorbed by the BOX is negative, which indicates that the BOX is supplying power to
the 12-V source.
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p®) (W) Figure 1.22
36 Power waveform for
Example 1.8.
24 -
12
5 6
| — |
1 2 3 4 7 8 9 10 t (ms)
_12_
_24_
_36_
LEARNING ASSESSMENTS
ANSWER:

E1.8 The power absorbed by the BOX in Fig. E1.8 is p(f) = 2.5¢~* W. Compute the energy and
charge delivered to the BOX in the time interval 0 < ¢ < 250 ms.

i(1)

50e7tV BOX

Figure E1.8

395.1 mJ; 8.8 mC.
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E1.9 The energy absorbed by the BOX in Fig. E1.9 is given below. Calculate and sketch the
current flowing into the BOX. Also calculate the charge that enters the BOX between 0

and 12 seconds.

w(n) ()

0

10V BOX

—2.54

i1) (A)

2 3 4 5 6 1(s)

025

0.125

—0.125

—0.25

Figure E1.9

2 3 9 10 " 12 t(s)

ANSWER:
0=0.

EXAMPLE 1.9
AN

specifications.

According to the USB 2.0 standard, a device is classified as low power if it draws 100 mA or
less and high power if it draws between 100 and 500 mA.

1. A 1000 mAh lithium-ion battery has been fully discharged (i.e., 0 mAh). How long will it
take to recharge it from a USB port supplying a constant current of 250 mA? How much
charge is stored in the battery when it is fully charged?

2. A fully charged 1000 mAh lithium-ion battery supplies a load, which draws a constant
current of 200 mA for 4 hours. How much charge is left in the battery at the end of the
4 hours? Assuming that the load remains constant at 3.6 V, how much energy is absorbed

by the load in joules?

The ubiquitous universal serial bus (USB) port is commonly utilized to charge smartphones,
as shown in Fig. 1.23. Technical details for USB specifications can be found at www.usb.
org. The amount of current that can be provided over a USB port is defined in the USB


http://www.usb.org
http://www.usb.org
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Figure 1.23

Charging an Apple
iPhone® using a USB
port.

©abalcazar/iStockphoto

1. With a constant current of 250 mA, the time required to recharge the battery is 1000 mAh  SOLUTION
/250 mA = 4 h. The battery has a capacity of 1000 mAh. The charge stored in the battery
when fully charged is 1000 mAh X 1 A/1000 mA X 3600 s/h = 3600 As = 3600 C.

2. A constant current of 200 mA is drawn from the battery for 4 hours, so 800 mAh X
1 A/1000 mA X 3600 s/h = 2880 C removed from the battery. The charge left in the
battery is 3600 — 2880 = 720 C. The power absorbed by the load is 3.6 V X 0.2 A = 0.72 W.
The energy absorbed by the load is 0.72 W X 4 h X 3600 s/h = 10,368 J.

SUMMARY

m The standard prefixes employed

p=10"" k=10’
n=10" M = 10°
w=10"° G=10°
m=10"" T =10"

m The relationships between current and charge

1
i(H) = dq(®) or q) = f i(x)dx
dt -
m The relationships among power, energy, current,
and voltage
dw

=i

dt

t t
Aw=erdt=£ vl dt

1

B The passive sign convention The passive sign conven-

tion states that if the voltage and current associated with an
element are as shown in Fig. 1.11, the product of

vand i, with their attendant signs, determines the magnitude
and sign of the power. If the sign is positive, power is being
absorbed by the element, and if the sign is negative, the
element is supplying power.

Independent and dependent sources An ideal indepen-
dent voltage (current) source is a two-terminal element that
maintains a specified voltage (current) between its terminals,
regardless of the current (voltage) through (across) the ele-
ment. Dependent or controlled sources generate a voltage or
current that is determined by a voltage or current at a speci-
fied location in the circuit.

Conservation of energy The electric circuits under investiga-
tion satisfy the conservation of energy.

Tellegen’s theorem The sum of the powers absorbed by all
elements in an electrical network is zero.



18 CHAPTER 1 ¢ BASIC CONCEPTS

PROBLEMS

1.1 If the current in an electric conductor is 2.4 A, how many
coulombs of charge pass any point in a 30-second interval?

1.2 Determine the time interval required for a 12-A battery charger
to deliver 4800 C.

1.3 A lightning bolt carrying 30,000 A lasts for 50 micro-seconds.
If the lightning strikes an airplane flying at 20,000 feet, what is
the charge deposited on the plane?

1.4 If a 12-V battery delivers 100 J in 5 s, find (a) the amount of
charge delivered and (b) the current produced.

1.5 The current in a conductor is 1.5 A. How many coulombs of
charge pass any point in a time interval of 1.5 minutes?

1.6 If 60 C of charge pass through an electric conductor in
30 seconds, determine the current in the conductor.

1.7 Determine the number of coulombs of charge produced by a
12-A battery charger in an hour.

1.8 Five coulombs of charge pass through the element in Fig. P1.8
from point A to point B. If the energy absorbed by the element
is 120 J, determine the voltage across the element.

B
O
+

Vi

=0 |

Figure P1.8

1.9 The current that enters an element is shown in Fig. P1.9.
Find the charge that enters the element in the time interval
0<t<20s.

1.10 The charge entering the positive terminal of an element is
q(® = —30e ¥ mC. If the voltage across the element is
120e”* V, determine the energy delivered to the element in
the time interval 0 < ¢ < 50 ms.

The charge entering the positive terminal of an element is
given by the expression g(f) = —12¢~* mC. The power deliv-
ered to the element is p(f) = 2.4¢~* W. Compute the current
in the element, the voltage across the element, and the energy
delivered to the element in the time interval 0 < ¢ < 100 ms.

1.12 The voltage across an element is 12¢~* V. The current enter-
ing the positive terminal of the element is 2¢”* A. Find the

energy absorbed by the element in 1.5 s starting from 7 = 0.
The power absorbed by the BOX in Fig. P1.13 is 2¢~* W.

Calculate the amount of charge that enters the BOX between
0.1 and 0.4 seconds.

1.13

4etvV BOX

Figure P1.13

1.14 The power absorbed by the BOX in Fig. P1.14 is 0.1e~* W.
Calculate the energy absorbed by the BOX during this same

time interval.

i(H) mA
10 10e~ 2y BOX
(o] 10 20 t(s) Figure P1.14
Figure P1.9
1.15 The energy absorbed by the BOX in Fig. P1.15 is shown below. How much charge enters the
BOX between 0 and 10 milliseconds?
i) w(?) (ml)
154
15V BOX
10
54
! ! !
T T T T
1 2 3 4 5 6 7 8 9 10 ¢(ms)
75 -
—10
—15 4
Figure P1.15
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1.16 The charge that enters the BOX in Fig. P1.16 is shown in the graph below. Calculate and sketch the
current flowing into and the power absorbed by the BOX between 0 and 10 milliseconds.

i(1)

12V

Figure P1.16

BOX

q(1) (mC)

10 t (ms)

1.17 The energy absorbed by the BOX in Fig. P1.17 is given below. Calculate and sketch the cur-
rent flowing into the BOX. Also calculate the charge which enters the BOX between 0 and 12

seconds.

i(t)

10V

BOX

Figure P1.17

w(n) J)

—-254

t(s)

1.18 The charge entering the upper terminal of the BOX in Fig. P1.18 is shown below. How much
energy is absorbed by the BOX between 0 and 9 seconds?

i(1)

12V

Figure P1.18

BOX

0.5

q(®) (C)

—0.5

—15+4

1 (s)



20 CHAPTER 1 »

BASIC CONCEPTS

1.19 The energy absorbed by the BOX in Fig. P1.19 is shown in the graph below.
Calculate and sketch the current flowing into the BOX between 0 and 10 milliseconds.

i(1)

12V

Figure P1.19

w() (mJ)

30
BOX

20

—10 -

-20

—30

1.20 Determine the amount of power absorbed or supplied
by the element in Fig. P1.20 if

(@) Vi=9VandI=2A
(b) V, =9VandI= —3A
(€) V,=—12Vandl=2A

(d V,=—12VandI= —-3A
¥ I
VI

Figure P1.20

1.21 Calculate the power absorbed by element A in Fig. P1.21.

3A

15V A:l
+

Figure P1.21

1.22 Calculate the power supplied by element A in Fig. P1.22.

2A

+
20V A:l

Figure P1.22

t (ms)

1.23 Element A in the diagram in Fig. P1.23 absorbs 30 W of
power. Calculate V..

2A

Vi il_:A:l

Figure P1.23

1.24 Element B in the diagram in Fig. P1.24 supplies 60 W of
power. Calculate /..

24

\% B:l
+

Figure P1.24

1.25 Element B in the diagram in Fig. P1.25 supplies 72 W of
power. Calculate V.

3A

Figure P1.25



1.26 Element B in the diagram in Fig. P1.26 supplies 72 W of
power. Calculate /..

+
18V B:l

Figure P1.26

1.27 (a) In Fig. P1.27 (a), P, = 36 W. Is element 2 absorbing or
supplying power, and how much?

(b) In Fig. P1.27 (b), P, = —48 W. Is element 1 absorbing or
supplying power, and how much?

+
12V
+
2 (6V
()

Figure P1.27

(b)

1.28 Two elements are connected in series, as shown in
Fig. P1.28. Element 1 supplies 24 W of power. Is element 2
absorbing or supplying power, and how much?

[1]av
6V
Figure P1.28

1.29 Element 2 in Fig. P1.29 absorbed 32 W. Find the power
absorbed or supplied by elements 1 and 3.

Figure P1.29

1.30 Choose I such that the power absorbed by element 2 in
Fig. P1.30is 7 W.

Figure P1.30

proBLEMS 21

1.31 Find the power that is absorbed or supplied by the circuit ele-
ments in Fig. P1.31.

L8V
M
L
+
20v(1)2a CDMV
2A
()
8V
I=4A +|T|
L
+
16V 4A <j>21x
4A
(®)
Figure P1.31

1.32 Find the power that is absorbed or supplied by the network
elements in Fig. P1.32.

8V
I.=2A +|T|— 2A

12V Cj)

2A
@
24V L 20V
O ]
oA~ 2a L I,=2A
+
<j>41x |:2 12v
2A
(b)

Figure P1.32

1.33 Compute the power that is absorbed or supplied by the
elements in the network in Fig. P1.33.

L 12V 1,
I.=4A B 2A
<O
2A
+ +
36V Cj) |:2 24V |:3 28V
Figure P1.33
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1.34 Find the power that is absorbed or supplied by element 2 in

Fig. P1.34.
2V,
4V x
2A + -
<>
L1 N
+
12v<i) [2] Vi
2A
Figure P1.34
1.35 Find [, in the network in Fig. P1.35.
12V Uy
IX + —
I
2A 2A
+

+
36V Cj) |:2 24V

Figure P1.35

1.36 Determine the power absorbed by element 1 in Fig. P1.36.

I v . 8v
1] ]
L1 L=12A
+ +
36V CD 24V <l> 2, |:3:|16 v
Figure P1.36
1.37 Find the power absorbed or supplied by element 1 in
Fig. P1.37.
6V LAV
L] L2 ]
L 2A
+

18V Cj) 24V Cj) 2, <l> 20V

IX
Figure P1.37

1.38 Find the power absorbed or supplied by element 3 in

Fig. P1.38.

4V 12V

My -
L \_ 4A

2A |:2 16V

Figure P1.38

Cj)nv <j>2vx [4]20v

1.39 Find the power absorbed or supplied by element 1 in

Fig. P1.39.

4V 12V

il )
L1 \_ 4a
+ + + +
Al <T> 12V [2] 8V |:3 20V
4A 2A I,

Figure P1.39

1.40 Find V, in the network in Fig. P1.40 using Tellegen’s theorem.

16V

L] N L2] 131

12V 24V ty -~
9VCD G) 12V
Figure P1.40

1.41 Find [, in the circuit in Fig. P1.41 using Tellegen’s theorem.

4V 8V 18V 12V
L2 e R e I e IR
L5 L LI /

CD 24V

X
Figure P1.41

+

av (Dan o

1.42 TIs the source V, in the network in Fig. P1.42 absorbing or
supplying power, and how much?
6V Vs
= )

10\/;[] 9A<D16v [:lsv

+ +

3A

Figure P1.42

1.43 Find [, in the network in Fig. P1.43 using Tellegen’s theorem.

8V
0A T
L 4A
+
24Vcir> |:2 10V I=2A
6V B +
-] E
3 4 |16V
L= ;
., -
+
41x<j> [s:lev
8V -
AL -/ [ia
L8]
3A
Figure P1.43



1.44 Calculate the power absorbed by each element in the circuit
in Fig. P1.44. Also, verify that Tellegen’s theorem is satisfied
by this circuit.

31, L 24V
<> s |
N L—I2a
2A
v L6V 9V
M 2] ]
LI 2A] aal— L A
+ +
24V<i> 12v<DeA 6V 3:| 15V Cﬁ)
4A a I.=2A
Figure P1.44

1.45 Calculate the power absorbed by each element in the circuit
in Fig. P1.45. Also, verify that Tellegen’s theorem is satisfied
by this circuit.

ap s 1OV
[3]
L
L5V L5V
[2] 4]
1A L— L1 3p

Figure P1.45

PROBLEMS

1.46 In the circuit in Fig. P1.46, element 1 absorbs 40 W,
element 2 supplies 50 W, element 3 supplies 25 W, and ele-
ment 4 absorbs 15 W. How much power is supplied by ele-
ment 57

Figure P1.46

23



ChapterTwo

THE LEARNING GOALS FOR THIS

CHAPTER ARE THAT STUDENTS RES|ST|VE«_ =
Lo \

SHOULD BE ABLE TO:

B Use Ohm’s law to calculate the voltages and currents in
electric circuits.

B Apply Kirchhoff’s current law and Kirchhoff’s voltage
law to determine the voltages and currents in an electric
circuit.

Analyze single-loop and single-node-pair circuits to
calculate the voltages and currents in an electric circuit.

Determine the equivalent resistance of a resistor network
where the resistors are in series and parallel.

Calculate the voltages and currents in a simple electric
circuit using voltage and current division.

Transform the basic wye resistor network to a delta
resistor network, and visa versa.

Analyze electric circuits to determine the voltages and
currents in electric circuits that contain dependent
sources.

EXPERIMENTS THAT HELP STUDENTS DEVELOP AN UNDERSTANDING OF THE ANALYSIS OF
RESISTIVE CIRCUITS ARE:

B Ohm's Law: Verify Ohm's law by measuring the current through and the voltage across a resistor.

B Series and Parallel Resistors: Find the equivalent resistance of resistors connected in parallel and in series by calculat-
ing the equivalent resistance between two nodes using the measured current flowing between and the voltage between the
nodes.

B Voltage and Current Dividers: Compare the voltages and currents in divider networks that are found analytically to the values
obtained from PSpice simulations and from voltage and current measurements.

B Wye-Delta Transformations: Demonstrate the equivalence of certain delta and wye networks through simulations and mea-
surements.

24
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Ohm’s law is named for the German physicist Georg Simon Ohm, who is credited with
establishing the voltage—current relationship for resistance. As a result of his pioneering work,
the unit of resistance bears his name.

Ohm’s law states that the voltage across a resistance is directly proportional to the
current flowing through it. The resistance, measured in ohms, is the constant of proportional-
ity between the voltage and current.

A circuit element whose electrical characteristic is primarily resistive is called a resistor
and is represented by the symbol shown in Fig. 2.1a. A resistor is a physical device that can
be purchased in certain standard values in an electronic parts store. These resistors, which find
use in a variety of electrical applications, are normally carbon composition or wirewound.
In addition, resistors can be fabricated using thick oxide or thin metal films for use in hybrid
circuits, or they can be diffused in semiconductor integrated circuits. Some typical discrete
resistors are shown in Fig. 2.1b.

The mathematical relationship of Ohm’s law is illustrated by the equation

v() = Ri(?), where R = 0 2.1

or, equivalently, by the voltage—current characteristic shown in Fig. 2.2a. Note carefully the
relationship between the polarity of the voltage and the direction of the current. In addition,
note that we have tacitly assumed that the resistor has a constant value and therefore that the
voltage—current characteristic is linear.

The symbol () is used to represent ohms, and therefore,

1Q=1V/A

Although in our analysis we will always assume that the resistors are /inear and are thus
described by a straight-line characteristic that passes through the origin, it is important that
readers realize that some very useful and practical elements do exist that exhibit a nonlinear
resistance characteristic; that is, the voltage—current relationship is not a straight line.

i(r)

o(t) 3 R

(a) (b)
Figure 2.1

14
Ohm'’s Law

¥
HINT
e passive sign convention will

be employed in conjunction with
Ohm'’s law.

(a) Symbol for a resistor; (b) some practical devices. (1), (2), and (3) are high-power resistors. (4) and (5) are high-
wattage fixed resistors. (6) is a high-precision resistor. (7)-(12) are fixed resistors with different power ratings.

(Photo courtesy of Mark Nelms and Jo Ann Loden)
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Figure 2.2 () ()

Graphical representation
of the voltage—current
relationship for

(a) a linear resistor and
(b) a light bulb.

i(t) i(1)

(a) (b)

The light bulb from the flashlight in Chapter 1 is an example of an element that exhibits a
nonlinear characteristic. A typical characteristic for a light bulb is shown in Fig. 2.2b.

Since a resistor is a passive element, the proper current—voltage relationship is illustrated
in Fig. 2.1a. The power supplied to the terminals is absorbed by the resistor. Note that the
charge moves from the higher to the lower potential as it passes through the resistor and
the energy absorbed is dissipated by the resistor in the form of heat. As indicated in Chapter 1,
the rate of energy dissipation is the instantaneous power, and therefore

P = v(®i(D) 22

which, using Eq. (2.1), can be written as

23

2
plo) = Ri*) = 2

This equation illustrates that the power is a nonlinear function of either current or voltage and
that it is always a positive quantity.

Conductance, represented by the symbol G, is another quantity with wide application in
circuit analysis. By definition, conductance is the reciprocal of resistance; that is,

G-1
The unit of conductance is the siemens, and the relationship between units is
1S=1A/V
Using Eq. (2.4), we can write two additional expressions,
(0 = Gu() 2.5
and
p) = l% = Gv(1) 2.6

Eq. (2.5) is another expression of Ohm’s law.

Two specific values of resistance, and therefore conductance, are very important: R = 0
and R = ce.

In examining the two cases, consider the network in Fig. 2.3a. The variable resistance
symbol is used to describe a resistor such as the volume control on a radio or television set.
As the resistance is decreased and becomes smaller and smaller, we finally reach a point
where the resistance is zero and the circuit is reduced to that shown in Fig. 2.3b; that is, the
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it o) i) Figure 2.3
+ + + Short-circuit and open-circuit

descriptions.
o(t) /{R o(r) o(r)

(a) (b) (c)

resistance can be replaced by a short circuit. On the other hand, if the resistance is increased
and becomes larger and larger, we finally reach a point where it is essentially infinite and the
resistance can be replaced by an open circuit, as shown in Fig. 2.3c. Note that in the case of
a short circuit where R = 0,

v(f) = Ri(?)

=0

Therefore, v(f) = 0, although the current could theoretically be any value. In the open-
circuit case where R = oo,

i) = v(/R

=0

Therefore, the current is zero regardless of the value of the voltage across the open terminals.

In the circuit in Fig. 2.4a, determine the current and the power absorbed by the resistor. EXAMPLE 2 . 1
AAYAN

Using Eq. (2.1), we find the current to be SOLUTION
I=V/R =12/2k = 6 mA

Note that because many of the resistors employed in our analysis are in k(), we will use k
in the equations in place of 1000. The power absorbed by the resistor is given by Eq. (2.2)
or (2.3) as
P=VI=(12)6 X 107 = 0.072 W
=I’R = (6 X 1073*2k) = 0.072 W
= V%R = (12)°/2k = 0.072 W

I I Figure 2.4

Circuits for Examples 2.1

< 410k
v +> 2k0 GD 4.
C— s» —)Vs $>P=3.6mW to 24

(a) (b)

I=0.5mA 1

< S P=80mwW
VSCjD §G=50|¢S Vs >4mA R

\'4

Im+

© (d)
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EXAMPLE 2.2
N

SOLUTION

The power absorbed by the 10-k() resistor in Fig. 2.4b is 3.6 mW. Determine the voltage
and the current in the circuit.

Using the power relationship, we can determine either of the unknowns:

VZ/R=P
Vi= (3.6 X 107*)(10k)
Vi=6V
and
I’R=P
I* = (3.6 X 107%)/10k
1 =0.6mA

Furthermore, once Vs is determined, / could be obtained by Ohm’s law, and likewise once
I is known, then Ohm’s law could be used to derive the value of V. Note carefully that the
equations for power involve the terms /% and V3. Therefore, / = —0.6 mA and Vg = —6 V
also satisfy the mathematical equations and, in this case, the direction of both the voltage and
current is reversed.

EXAMPLE 2.3
AN

SOLUTION

Given the circuit in Fig. 2.4c, we wish to find the value of the voltage source and the power
absorbed by the resistance.

The voltage is
Ve=1/G = (05X 107%)/(50 X 1076 = 10V
The power absorbed is then
P =1*/G = (0.5 X 107%%/(50 X 107%) = 5 mW
Or we could simply note that
R=1/G =20k
and therefore
Vs =1IR = (0.5 X 107%)(20k) = 10V
and the power could be determined using P = I’R = V3/R = V.

EXAMPLE 2.4
AN

SOLUTION

Given the network in Fig. 2.4d, we wish to find R and V.

Using the power relationship, we find that
R=P/I*=(80 X 107%)/(4 X 107%? = 5kQ
The voltage can now be derived using Ohm’s law as
Vs=1IR = (4 X 107%)(5k) =20V

The voltage could also be obtained from the remaining power relationships in Egs. (2.2)
and (2.3).
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Before leaving this initial discussion of circuits containing sources and a single resistor,
it is important to note a phenomenon that we will find to be true in circuits containing many
sources and resistors. The presence of a voltage source between a pair of terminals tells us
precisely what the voltage is between the two terminals regardless of what is happening in
the balance of the network. What we do not know is the current in the voltage source. We
must apply circuit analysis to the entire network to determine this current. Likewise, the
presence of a current source connected between two terminals specifies the exact value of
the current through the source between the terminals. What we do not know is the value
of the voltage across the current source. This value must be calculated by applying circuit
analysis to the entire network. Furthermore, it is worth emphasizing that when applying
Ohm’s law, the relationship V = IR specifies a relationship between the voltage directly
across a resistor R and the current that is present in this resistor. Ohm’s law does not apply
when the voltage is present in one part of the network and the current exists in another.
This is a common mistake made by students who try to apply V = IR to a resistor R in the
middle of the network while using a V at some other location in the network.

LEARNING ASSESSMENTS

E2.1 Given the circuits in Fig. E2.1, find (a) the current I and the power absorbed by the resistor ANSWER:
in Fig. E2.1a, and (b) the voltage across the current source and the power supplied by the source (@)1 =03 mA,
in Fig. E2.1b. P =3.6 mW,

(b) Vs =3.6V,

P =216 mW.
1
+
12v<j> <§>40k9 Vg C)ObmA <§>6k9

Figure E2.1 @ ®
E2.2 Given the circuits in Fig. E2.2, find (a) R and Vj in the circuit in Fig. E2.2a, and (b) find / ANSWER:

and R in the circuit in Fig. E2.2b.

<R — <R
0-4mA<,> Vs SP—t16mw <+>12V SP-o2sW

Figure E2.2 @) (b)

(aR=10kQ), Vs =4V,
(b) I =20.8 mA, R = 576 Q.

E2.3 The power absorbed by G, in Fig. E2.3 is 50 mW. Find G,.

1ov<j> <§>Gx

Figure E2.3

ANSWER:
G, = 500 pS.
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(22

Kirchhoff’'s
Laws

TEN
HINT
CL isan extremely important and

useful law.

Figure 2.5

Circuit used to illustrate KCL.

The circuits we have considered previously have all contained a single resistor, and we
have analyzed them using Ohm’s law. At this point we begin to expand our capabilities to
handle more complicated networks that result from an interconnection of two or more of
these simple elements. We will assume that the interconnection is performed by electrical
conductors (wires) that have zero resistance—that is, perfect conductors. Because the wires
have zero resistance, the energy in the circuit is in essence lumped in each element, and we
employ the term lumped-parameter circuit to describe the network.

To aid us in our discussion, we will define a number of terms that will be employed
throughout our analysis. As will be our approach throughout this text, we will use examples
to illustrate the concepts and define the appropriate terms. For example, the circuit shown
in Fig. 2.5a will be used to describe the terms node, loop, and branch. A node is simply a
point of connection of two or more circuit elements. The reader is cautioned to note that,
although one node can be spread out with perfect conductors, it is still only one node. This
is illustrated in Fig. 2.5b, where the circuit has been redrawn. Node 5 consists of the entire
bottom connector of the circuit.

If we start at some point in the circuit and move along perfect conductors in any direc-
tion until we encounter a circuit element, the total path we cover represents a single node.
Therefore, we can assume that a node is one end of a circuit element together with all
the perfect conductors that are attached to it. Examining the circuit, we note that there
are numerous paths through it. A loop is simply any closed path through the circuit in
which no node is encountered more than once. For example, starting from node 1, one
loop would contain the elements R, v,, R,, and i;; another loop would contain R,, v;, v,
R,, and i;; and so on. However, the path R,, v, Rs, v,, R;, and i, is not a loop because we
have encountered node 3 twice. Finally, a branch is a portion of a circuit containing only
a single element and the nodes at each end of the element. The circuit in Fig. 2.5 contains
eight branches.

Given the previous definitions, we are now in a position to consider Kirchhoff’s laws,
named after German scientist Gustav Robert Kirchhoff. These two laws are quite simple but
extremely important. We will not attempt to prove them because the proofs are beyond our
current level of understanding. However, we will demonstrate their usefulness and attempt to
make the reader proficient in their use. The first law is Kirchhoff’s current law (KCL), which
states that the algebraic sum of the currents entering any node is zero. In mathematical form
the law appears as

N
S =0 2.7

j=1

ir(1) i5(1)

i(1) ig(1)

(@ (b)
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where i;(?) is the jth current entering the node through branch j and N is the number of
branches connected to the node. To understand the use of this law, consider node 3 shown in
Fig. 2.5. Applying Kirchhoff’s current law to this node yields

i(1) = iy + is() — i) = 0

We have assumed that the algebraic signs of the currents entering the node are positive and,
therefore, that the signs of the currents leaving the node are negative.
If we multiply the foregoing equation by —1, we obtain the expression

—h(0) + iy(0) — is() + () =0

which simply states that the algebraic sum of the currents leaving a node is zero. Alternatively,
we can write the equation as

ip(1) + is(f) = iy(1) + i7(D)

which states that the sum of the currents entering a node is equal to the sum of the currents
leaving the node. Both of these italicized expressions are alternative forms of Kirchhoff’s
current law.

Once again it must be emphasized that the latter statement means that the sum of the
variables that have been defined entering the node is equal to the sum of the variables that
have been defined leaving the node, not the actual currents. For example, i(f) may be defined
entering the node, but if its actual value is negative, there will be positive charge leaving the
node.

Note carefully that Kirchhoff’s current law states that the algebraic sum of the currents
either entering or leaving a node must be zero. We now begin to see why we stated in Chapter 1
that it is critically important to specify both the magnitude and the direction of a current.
Recall that current is charge in motion. Based on our background in physics, charges cannot be
stored at a node. In other words, if we have a number of charges entering a node, then an equal
number must be leaving that same node. Kirchhoff’s current law is based on this principle of
conservation of charge.

Finally, it is possible to generalize Kirchhoff’s current law to include a closed surface. By
a closed surface we mean some set of elements completely contained within the surface that
are interconnected. Since the current entering each element within the surface is equal to that
leaving the element (i.e., the element stores no net charge), it follows that the current enter-
ing an interconnection of elements is equal to that leaving the interconnection. Therefore,
Kirchhoff’s current law can also be stated as follows: The algebraic sum of the currents
entering any closed surface is zero.
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Let us write KCL for every node in the network in Fig. 2.5, assuming that the currents leaving
the node are positive.

The KCL equations for nodes 1 through 5 are

—L(®) + 5, + i) =0

i1(1) — iy(0) +ig() =0

—i(0) + iy — is() + i) = 0

—i3(0) +is() —ig(n =0

—ig(t) = i7(0) + i) = 0
Note carefully that if we add the first four equations, we obtain the fifth equation. What does
this tell us? Recall that this means that this set of equations is not linearly independent. We can
show that the first four equations are, however, linearly independent. Store this idea in memory

because it will become very important when we learn how to write the equations necessary to
solve for all the currents and voltages in a network in the following chapter.

EXAMPLE 2.5

AUYAN

SOLUTION
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EXAMPLE 2.6

AN

SOLUTION

The network in Fig. 2.5 is represented by the topological diagram shown in Fig. 2.6. We wish

to find the unknown currents in the network.

Figure 2.6 @
Topological diagram for the
circuit in Fig. 2.5.

I 60 mA 20 mA

I ® &
@) ©)
Is 40 mA 30 mA
®

Assuming the currents leaving the node are positive, the KCL equations for nodes 1 through
4 are

—1, +0.06 +0.02=0

L—1,+1,=0

—0.06 +1, —Is+0.04 =0

—0.02 +15,—0.03=0
The first equation yields /; and the last equation yields /5. Knowing /5, we can immediately
obtain /, from the third equation. Then the values of /; and I, yield the value of /i from the

second equation. The results are I, = 80 mA, I, = 70 mA, I5 = 50 mA, and Iy = —10 mA.

As indicated earlier, dependent or controlled sources are very important because we

encounter them when analyzing circuits containing active elements such as transistors. The
following example presents a circuit containing a current-controlled current source.

EXAMPLE 2.7
AN

Let us write the KCL equations for the circuit shown in Fig. 2.7.

Figure 2.7 R,

A

4

Circuit containing a
dependent current source.

i (1)

® \‘7 ©)
50i,(1) ‘

Ci) v,(0) s Ry 2 Ry

is(f) i5() iy(t)
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The KCL equations for nodes 1 through 4 follow: SOLUTION
(1) + (1) — is() =0
—i,(1) + i3() — 50ix(r) = 0
=iy (1) + 50i)(1) + iy() =0
is(t) = ix(t) — i) = 0
If we added the first three equations, we would obtain the negative of the fourth. What does
this tell us about the set of equations?

Kirchhoff’s second law, called Kirchhoff’s voltage law (KVL), states that the algebraic sum of
the voltages around any loop is zero. As was the case with Kirchhoff’s current law, we will defer
the proof of this law and concentrate on understanding how to apply it. Once again the reader is
cautioned to remember that we are dealing only with lumped-parameter circuits. These circuits
are conservative, meaning that the work required to move a unit charge around any loop is zero.

In Chapter 1, we related voltage to the difference in energy levels within a circuit and
talked about the energy conversion process in a flashlight. Because of this relationship
between voltage and energy, Kirchhoff’s voltage law is based on the conservation of energy.

Recall that in Kirchhoff’s current law, the algebraic sign was required to keep track of whether
the currents were entering or leaving a node. In Kirchhoff’s voltage law, the algebraic sign is used
to keep track of the voltage polarity. In other words, as we traverse the circuit, it is necessary to
sum to zero the increases and decreases in energy level. Therefore, it is important we keep track
of whether the energy level is increasing or decreasing as we go through each element.

Let us find 7, and 7, in the network represented by the topological diagram in Fig. 2.6. EXAMPLE 2 . 8

This diagram is redrawn in Fig. 2.8; node 1 is enclosed in surface 1, and nodes 3 and 4 are SOLUTION
enclosed in surface 2. A quick review of the previous example indicates that we derived a

value for I, from the value of Is. However, /5 is now completely enclosed in surface 2. If we

apply KCL to surface 2, assuming the currents out of the surface are positive, we obtain

I, —0.06 — 0.02 — 0.03+0.04 =0
or
L, = 70 mA

which we obtained without any knowledge of /5. Likewise for surface 1, what goes in must
come out and, therefore, /; = 80 mA. The reader is encouraged to cut the network in Fig. 2.6
into two pieces in any fashion and show that KCL is always satisfied at the boundaries.

Figure 2.8

Surface 1 Diagram used to demonstrate
KCL for a surface.
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LEARNING ASSESSMENTS

E2.4 Given the networks in Fig. E2.3, find (a) I, in Fig. E2.4a and (b) I in Fig. E2.4b. ANSWER:
(a) I, = —50 mA;
50 mA (b) I; = 70 mA
€ =D : 2 :
I, 10 mA 40 mA 20 mA
(@ (®)
Figure E2.4
E2.5 Find (a) /; in the network in Fig. E2.5a and (b) [, and I, in the circuit in Fig. E2.5b ANSWER:
(a) I, = 6 mA;

@

vI\/\IA

4 mA

(b)I, = 8 mA and I, = 5 mA.
12 mA

VA
VA
)
N
VA

3mA I, 4mA

(@)

Figure E2.5

(b)

E2.6 Find the current i, in the circuits in Fig. E2.6.

ot

<

s

i

X

10i, J 10i,
1RO

Figure E2.6

(a)

ANSWER:
(a)i, = 4 mA;
(b) i, = 12 mA.

<
R
C)no mA SR

Ly 12 mA

(b)

In applying KVL, we must traverse any loop in the circuit and sum to zero the increases
and decreases in energy level. At this point, we have a decision to make. Do we want to con-
sider a decrease in energy level as positive or negative? We will adopt a policy of considering
a decrease in energy level as positive and an increase in energy level as negative. As we move
around a loop, we encounter the plus sign first for a decrease in energy level and a negative
sign first for an increase in energy level.

Finally, we employ the convention V,, to indicate the voltage of point a with respect
to point b: that is, the variable for the voltage between point a and point b, with point a
considered positive relative to point b. Since the potential is measured between two points,
it is convenient to use an arrow between the two points, with the head of the arrow located
at the positive node. Note that the double-subscript notation, the + and — notation, and the
single-headed arrow notation are all the same if the head of the arrow is pointing toward the
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Consider the circuit shown in Fig. 2.9. If Vi and Vi are known quantities, let us find V.

P A]}f b\ ¢ Figgre 29 |
+ _ N4 Circuit used to illustrate
VR, 5V +KVL.
3ov<4_r> Ry S Vi,
. _
R
f - VR + e \./ d
3 15V

Starting at point a in the network and traversing it in a clockwise direction, we obtain the
equation

+Vg, =5+ Vg, — 15+ Vi —30=0
which can be written as
+Vg, + Vg, + Vg, =5+ 15+ 30
=50
Now suppose that Vi and Vg, are known to be 18 V and 12 V, respectively. Then V, = 20'V.

EXAMPLE 2.9
AA

SOLUTION

Consider the network in Fig. 2.10.

e +VRi- p + VR - . 4 VR Figure 2.10
1 WW YW VW Circuit used to explain
R, R, Ry KVL
N .
R4§VR4

CJ_FD 24V ¢ 8V Ci
C;) 16V

Let us demonstrate that only two of the three possible loop equations are linearly independent.

Note that this network has three closed paths: the left loop, right loop, and outer loop.
Applying our policy for writing KVL equations and traversing the left loop starting at point
a, we obtain

Vg, + Vg, — 16 -24=0
The corresponding equation for the right loop starting at point b is
Vg, + Vo, + 8+ 16 — Vi =0
The equation for the outer loop starting at point a is
Vg, + Vg, + Ve +8—-24=0

Note that if we add the first two equations, we obtain the third equation. Therefore, as we
indicated in Example 2.5, the three equations are not linearly independent. Once again, we
will address this issue in the next chapter and demonstrate that we need only the first two
equations to solve for the voltages in the circuit.

EXAMPLE 2.10
A

SOLUTION
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a a
+ +
Ve= Vap [1] Vi=V, [1] v, W=V, |:1 V, V,=Vu=V, V, [1] v,
5—5 — / 0 ° b /
(b) (© (d)
Figure 2.11

Equivalent forms for labeling voltage.

positive terminal and the first subscript in the double-subscript notation. All of these equiva-
lent forms for labeling voltages are shown in Fig. 2.11. The usefulness of the arrow notation
stems from the fact that we may want to label the voltage between two points that are far apart
in a network. In this case, the other notations are often confusing.

EXAMPLE 2.11

AN

Figure 2.12
Network used in Example 2.11.

SOLUTION

Consider the network in Fig. 2.12a. Let us apply KVL to determine the voltage between two
points. Specifically, in terms of the double-subscript notation, let us find V,, and V,.

12V

24V Ci) Ry S4v 24V C_D Ve
Ry e Ry \9/
VA e VWA
f —1ov+ -6v+ d f —1ov+

() (b)

The circuit is redrawn in Fig. 2.12b. Since points a and e as well as e and ¢ are not physically
close, the arrow notation is very useful. Our approach to determining the unknown voltage is to
apply KVL with the unknown voltage in the closed path. Therefore, to determine V,, we can use
the path aefa or abcdea. The equations for the two paths in which V,, is the only unknown are

Vet 10—=24=0
and
6-12+4+6-V,=0

Note that both equations yield V,, = 14 V. Even before calculating V,,, we could calculate

ae’
V.. using the path cdec or cefabc. However, since V,, is now known, we can also use the path
ceabc. KVL for each of these paths is

4+6+V,.=0
-V, +10-24+16—-12=0
and
-V, —V,+16—-12=0
Each of these equations yields V,. = —10 V.
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In general, the mathematical representation of Kirchhoff’s voltage law is

¥
HINT
N
Zvj(t) =0 2.8 w extremely important and
j=1

useful law.

where v(t) is the voltage across the jth branch (with the proper reference direction) in

a loop containing N voltages. This expression is analogous to Eq. (2.7) for Kirchhoff’s
current law.

Given the network in Fig. 2.13 containing a dependent source, let us write the KVL equa- EXAMPLE 2 . 1 2

tions for the two closed paths abda and bcdb. VAYAVAN
. VRIA_ LN Figure 2.13
W v Network containing a
: d dent source
+ 20 VR1 1+ epen .
NGRS s 8
d
The two KVL equations are SOLUTION
VR, +VR2_VS:0
20Vg + Vi, — Vi, =0
LEARNING ASSESSMENTS
E2.7 Find I, and I, in Fig. E2.7. ANSWER:
I, =2 mA;
Il Il = 4 mA.
VWA
2 CD 6 mA 2 <l> 1.51,
) 1, 1TmA
Figure E2.7
E2.8 Find V,, and V,, in the network in Fig. E2.8. ANSWER:
V,y=26V;
o N b . V,, = 10V.
I - vI\/\IA
N~ “4vTt
+ 24V
6VS Cf) 6V
vl\/\IA v A
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E2.9 Find V,, in the circuit in Fig. E2.9. ANSWER:
Vbd =11V.
=1V
a b R _c
- T
+
v Vi <J_r> 10 Vg,
Figure E2.9 d
v Before proceeding with the analysis of simple circuits, it is extremely important that we
HINT emphasize a subtle but very critical point. Ohm’s law as defined by the equation V = IR refers

e subtleties associated with
Ohm'’s law, as described here, are
important and must be adhered to
in order to ensure that the variables
have the proper sign.

Figure 2.14

Circuits used to explain Ohm’s
law.

(23

Single-Loop
Circuits

i(t)

o(1) f)

Figure 2.15
Single-loop circuit.

to the relationship between the voltage and current as defined in Fig. 2.14a. If the direction
of either the current or the voltage, but not both, is reversed, the relationship between the cur-
rent and the voltage would be V = —IR. In a similar manner, given the circuit in Fig. 2.14b,
if the polarity of the voltage between the terminals A and B is specified as shown, then the
direction of the current I is from point B through R to point A. Likewise, in Fig. 2.14c, if the
direction of the current is specified as shown, then the polarity of the voltage must be such
that point D is at a higher potential than point C and, therefore, the arrow representing the
voltage V is from point C to point D.

(b) ©

VOLTAGE DIVISION At this point we can begin to apply the laws presented earlier to
the analysis of simple circuits. To begin, we examine what is perhaps the simplest circuit—a
single closed path, or loop, of elements.

Applying KCL to every node in a single-loop circuit reveals that the same current flows
through all elements. We say that these elements are connected in series because they carry
the same current. We will apply Kirchhoff’s voltage law and Ohm’s law to the circuit to
determine various quantities in the circuit.

Our approach will be to begin with a simple circuit and then generalize the analysis to
more complicated ones. The circuit shown in Fig. 2.15 will serve as a basis for discussion.
This circuit consists of an independent voltage source that is in series with two resistors. We
have assumed that the current flows in a clockwise direction. If this assumption is correct, the
solution of the equations that yields the current will produce a positive value. If the current
is actually flowing in the opposite direction, the value of the current variable will simply be
negative, indicating that the current is flowing in a direction opposite to that assumed. We have
also made voltage polarity assignments for vz and vg,. These assignments have been made
using the convention employed in our discussion of Ohm’s law and our choice for the direction
of i(f)—that is, the convention shown in Fig. 2.14a.

Applying Kirchhoff’s voltage law to this circuit yields

—v(t) + v, T, =0
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or
v(t) = vg, T g,
However, from Ohm’s law we know that
v, = R,i(1)
g, = Ryi(?)
Therefore,
v(t) = Ryi(t) + R,i(1)
Solving the equation for i(¢) yields
PN )
i(r) = R+ R, 2.9
Knowing the current, we can now apply Ohm’s law to determine the voltage across each
resistor:
vg, = Ryi(0)
=R, Y0 2.10
R, + R,
— R,
"R+ RV
Similarly, TEN
R HINT
Vg, = 4R1 +2R2 6) 2.11 e ner in which voltage

divides between two series
Though simple, Eqs. (2.10) and (2.11) are very important because they describe the opera- ~ esistors.
tion of what is called a voltage divider. In other words, the source voltage v(¢) is divided
between the resistors R, and R, in direct proportion to their resistances.
In essence, if we are interested in the voltage across the resistor R, we bypass the calcula-
tion of the current i(f) and simply multiply the input voltage v(¢) by the ratio

R
R + R

As illustrated in Eq. (2.10), we are using the current in the calculation, but not explicitly.
Note that the equations satisfy Kirchhoff’s voltage law, since

R Re o
—vu(t) + mv(l) + mv(l) =

Consider the circuit shown in Fig. 2.16. The circuit is identical to Fig. 2.15 except that R, EXAMPLE 2 . 1 3
is a variable resistor such as the volume control for a radio or television set. Suppose that VAYAVAN

Vs =9V, R, =90k(}, and R, = 30 k().
Let us examine the change in both the voltage across R, and the power absorbed in this
resistor as R is changed from 90 k() to 15 k().

Figure 2.16

Voltage-divider circuit.
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SOLUTION

Since this is a voltage-divider circuit, the voltage V, can be obtained directly as

v, = ||y
2T R ¥R, 7S

B 30k
B [90k + 3Ok](9)
=225V

Now suppose that the variable resistor is changed from 90 k() to 15 k(). Then

B 30k
V2= [30k i 15k](9)

=6V

The direct voltage-divider calculation is equivalent to determining the current / and then
using Ohm’s law to find V,. Note that the larger voltage is across the larger resistance. This
voltage-divider concept and the simple circuit we have employed to describe it are very use-
ful because, as will be shown later, more complicated circuits can be reduced to this form.

Finally, let us determine the instantaneous power absorbed by the resistor R, under the
two conditions R, = 90 k) and R, = 15 k(). For the case R, = 90 k(), the power absorbed
by R, is

9

2
Pz = 12R2 =S (m) (301()

= 0.169 mW

In the second case

P, = (%)2(3010

1.2 mW

The current in the first case is 75 A, and in the second case it is 200 pwA. Since the power
absorbed is a function of the square of the current, the power absorbed in the two cases is
quite different.

Let us now demonstrate the practical utility of this simple voltage-divider network.

EXAMPLE 2.14

AN

Figure 2.17

A high-voltage dc
transmission facility.

Consider the circuit in Fig. 2.17a, which is an approximation of a high-voltage dc transmission
facility. We have assumed that the bottom portion of the transmission line is a perfect conductor
and will justify this assumption in the next chapter. The load can be represented by a resistor of
value 183.5 (). Therefore, the equivalent circuit of this network is shown in Fig. 2.17b.

Line resistance is 0.04125 ()/mile
2 kA
O A% O
2kA 16.5Q +

<
Ci) 400 kV Load [:l Cﬁ 400kv Vi 218350

Perfect conductor

O O
\ 9 1%

400-mile transmission line

(@ (b)
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Let us determine both the power delivered to the load and the power losses in the line.

Using voltage division, the load voltage is SOLUTION
_ 183.5
Viws = | 1835 + 16.5] e
=367 kV

The input power is 800 MW and the power transmitted to the load is

Pload = Ileoad
= 734 MW
Therefore, the power loss in the transmission line is
e = Py = Pgma = IZRline
= 66 MW
Since P = VI, suppose now that the utility company supplied power at 200 kV and 4 kA. What
effect would this have on our transmission network? Without making a single calculation, we
know that because power is proportional to the square of the current, there would be a large

increase in the power loss in the line and, therefore, the efficiency of the facility would decrease
substantially. That is why, in general, we transmit power at high voltage and low current.

41

MULTIPLE-SOURCE/RESISTOR NETWORKS At this point we wish to extend our analy-
sis to include a multiplicity of voltage sources and resistors. For example, consider the circuit
shown in Fig. 2.18a. Here we have assumed that the current flows in a clockwise direction,
and we have defined the variable i(f) accordingly. This may or may not be the case, depending
on the value of the various voltage sources. Kirchhoff’s voltage law for this circuit is

+ug, F v(t) — 15(0) + v, + (1) + V5(1) — V(1) = 0
or, using Ohm’s law,
Ry + Ryi(1) = vi(1) — vy(®) + v3() — wy(1) — vs(1)
which can be written as
(R, + Ryi(t) = v(1)
where
u(1) = vi(0) + v3(0) — [ua(0) + @) + vs0)]

so that under the preceding definitions, Fig. 2.18a is equivalent to Fig. 2.18b. In other words,
the sum of several voltage sources in series can be replaced by one source whose value is
the algebraic sum of the individual sources. This analysis can, of course, be generalized to a
circuit with N series sources.

) 0,(8) Figure 2.18
i(t Ry _
0 +v'\/\ll‘ @ Equivalent circuits
R, with multiple
sources.
v,(0) i) C‘) v3(0)
i i
+
v5(1) C) Ry s, UR, o(t) +> é R,
/)

(@ (b)
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Figure 2.19 L PR YRy _ 4 URs _
Equivalent circuits WA A S
4 ' R, Ry
+
<
i(t) Ry Sor,
i(r)
o() i)
+
< <
RsénRS U(t)(i) SRy=R + R + R +..+ Ry
RN
v’\/\l‘
* g,
(a) (b)

Now consider the circuit with N resistors in series, as shown in Fig. 2.19a. Applying
Kirchhoff’s voltage law to this circuit yields

u(f) = vg, T vg, T oy,

and therefore,

u(t) = Rgi(t) 2.12
where
R¢=R,+R,+---+Ry 2.13
and hence,
Lo v
i(t) = RS 2.14

Note also that for any resistor R; in the circuit, the voltage across R; is given by the expression
R,
g, = Rf; u(t) 2.15

which is the voltage-division property for multiple resistors in series.

Equation (2.13) illustrates that the equivalent resistance of N resistors in series is simply
the sum of the individual resistances. Thus, using Eq. (2.13), we can draw the circuit in
Fig. 2.19b as an equivalent circuit for the one in Fig. 2.19a.

EXAMPLE 2.15
YAYAN

Given the circuit in Fig. 2.20a, let us find 1, V,,, and the power absorbed by the 30-kQ)
resistor. Finally, let us use voltage division to find V.

Figure 2.20 @ 10 kQ »  20kQ c 40 kQ b
. . . vI\/\IA y’\/\[‘ _\AA/\_.
Circuit used in
Example 2.15. d
Cj)ev C_r)nv CIF 6V 220kn

I  30kQ

vI\/\IA
e d c

(@) (b)
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KVL for the network yields the equation
10k/ + 20k/ + 12 + 30kl — 6 =0
60k = —6
I=-0.1 mA

Therefore, the magnitude of the current is 0.1 mA, but its direction is opposite to that assumed.
The voltage V,, can be calculated using either of the closed paths abdea or bcdb. The
equations for both cases are

10K/ + V,;, +30k — 6 =0
and
20kl + 12 = V,,=0

Using / = —0.1 mA in either equation yields V,, = 10 V. Finally, the power absorbed by the
30-k(} resistor is
P=IR=03mW

Now from the standpoint of determining the voltage V., we can simply add the sources since
they are in series, add the remaining resistors since they are in series, and reduce the network
to that shown in Fig. 2.20b. Then

_ 20k
20k + 40k

=-2V

Vbc ( - 6)

SOLUTION

A dc transmission facility is modeled by the approximate circuit shown in Fig. 2.21. If the
load voltage is known to be V.4 = 458.3 kV, we wish to find the voltage at the sending end
of the line and the power loss in the line.

I, Rine Figure 2.21
VWA N .
200 X Circuit used in
Example 2.16.
Ci) Vg Rioad é 220 O Vioad = 4583 kV

Knowing the load voltage and load resistance, we can obtain the line current using Ohm’s
law:

1, = 458.3k/220
= 2.083 kA

The voltage drop across the line is

Vline = (IL)(Rline)
= 41.66 kV

Now, using KVL,

VS = Vline + ‘/load
= 500 kV

EXAMPLE 2.16
YAYAYAN

SOLUTION
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Note that since the network is simply a voltage-divider circuit, we could obtain Vg immedi-
ately from our knowledge of Ry, Rp.q> and V)g,q. That is,

R load

Vload - Rload + Vline] VS

and V; is the only unknown in this equation.
The power absorbed by the line is

Pline = IiRline
= 86.79 MW
(PROBLEM-SOLVING STRATEGY
SINGLE-LOOP STEP 1. Define a current i(f). We know from KCL that there is only one current for a
CIRCUITS single-loop circuit. This current is assumed to be flowing either clockwise or

counterclockwise around the loop.

STEP 2. Using Ohm’s law, define a voltage across each resistor in terms of the defined
current.

STEP 3. Apply KVL to the single-loop circuit.

STEP 4. Solve the single KVL equation for the current i(¢). If i() is positive, the current is
flowing in the direction assumed; if not, then the current is actually flowing in the
opposite direction.

LEARNING ASSESSMENTS

E2.10 Find I and V,, in the circuit in Fig. E2.10. ANSWER:
v 1= —0.05 mA;
a b N\ c Vpa = 10 V.
e D
80 k() 1
C_D 6V 5 40 kQ
Figure E2.10 d
E2.11 In the network in Fig. E2.11, if V;is 3 V, find V. ANSWER:
Vi=9V.
a N\ b 25 k{) c
N\ W
Vs
5, 20 kQ % 15 kQ

Figure E2.11
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CURRENT DIVISION  An important circuit is the single-node-pair circuit. If we apply KVL to
every loop in a single-node-pair circuit, we discover that all of the elements have the same volt-
age across them and, therefore, are said to be connected in parallel. We will, however, apply
Kirchhoff’s current law and Ohm’s law to determine various unknown quantities in the circuit.

Following our approach with the single-loop circuit, we will begin with the simplest case
and then generalize our analysis. Consider the circuit shown in Fig. 2.22. Here we have an
independent current source in parallel with two resistors.

Since all of the circuit elements are in parallel, the voltage v(f) appears across each of
them. Furthermore, an examination of the circuit indicates that the current i(¢) is into the
upper node of the circuit and the currents i,(¢) and i,(¢) are out of the node. Since KCL essen-
tially states that what goes in must come out, the question we must answer is how i,(#) and
i,(¢) divide the input current i(7).

Applying Kirchhoff’s current law to the upper node, we obtain

i(t) = i)(t) + 1x(0)

and, employing Ohm’s law, we have

) v(®) vt
1 2
1 1
=|— 4+ —
(Rl Rz)”(’)
_v@®
RP
where
1 1 1
— =t 2.16
RP Rl R2
R, = RiRy 2.17
? R +R, :

Therefore, the equivalent resistance of two resistors connected in parallel is equal to the
product of their resistances divided by their sum. Note also that this equivalent resistance R,
is always less than either R; or R,. Hence, by connecting resistors in parallel we reduce the
overall resistance. In the special case when R, = R,, the equivalent resistance is equal to half
of the value of the individual resistors.

The manner in which the current i(¢) from the source divides between the two branches is
called current division and can be found from the preceding expressions. For example,

() = R,i(t)

RiR,

= mi(l‘) 2.18

and

i =%

I\

5» R, ()

Figure 2.22

Simple parallel circuit.

i\ in(0)
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EN
HINT
e ner in which current

divides between two parallel
resistors.

R,

i = R+ R, i(?) 2.19
and
: v(f
i) = %
= 1 I
R R, i(1) 2.20

Egs. (2.19) and (2.20) are mathematical statements of the current-division rule.

EXAMPLE 2.17
YAYAN

SOLUTION

Given the network in Fig. 2.23a, let us find 1,, I,, and V,,

First, it is important to recognize that the current source feeds two parallel paths. To empha-
size this point, the circuit is redrawn as shown in Fig. 2.23b. Applying current division,
we obtain

3 40k + 80k R
h= [601( + (40K + 801()](0'9 X 107)
= 0.6 mA
and
60k B
= 9 X
’ [60k+ (40k + 80k)](09 107
=03 mA

Note that the larger current flows through the smaller resistor, and vice versa. In addition,
note that if the resistances of the two paths are equal, the current will divide equally between
them. KCL is satisfied since /; + I, = 0.9 mA.
The voltage V, can be derived using Ohm’s law as
V, = 80kl,
=24V
The problem can also be approached in the following manner. The total resistance seen by the
current source is 40 k(); that is, 60 k() in parallel with the series combination of 40 k() and
80 k€, as shown in Fig. 2.23c. The voltage across the current source is then
V, = (0.9 X 107)40k
=36V

Now that V, is known, we can apply voltage division to find V,:
80k
Vo= (o v
° \80k + 40k/ '

_ ( 80k )
120k

=24V
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I Figure 2.23

+ 1 Circuits used in Example 2.17.

y < <
C) 09 mA gso kQ §4o KQ

+ + + +

09 mACD v, 60ka3 80kaZ v, s0kas CD 09ma V1S 40k0

(a) (b) (©

A typical car stereo consists of a 2-W audio amplifier and two speakers represented by EXAMPLE 2 . 1 8
the diagram shown in Fig. 2.24a. The output circuit of the audio amplifier is in essence a VATAYAN
430-mA current source, and each speaker has a resistance of 4 (). Let us determine the power

absorbed by the speakers.

The audio system can be modeled as shown in Fig. 2.24b. Since the speakers are both 4-Q0 SOLUTION
devices, the current will split evenly between them, and the power absorbed by each speaker is

P=1IR
= (215 X 1073)%(4)
= 184.9 mW

Figure 2.24
Circuits used in

J d E le 2.18.
Audio I: I: 430 mA C) $4Q $4Q xample

amplifier

(a) (b)

LEARNING ASSESSMENT

E2.12 Find the currents I; and I, and the power absorbed by the 40-k{), resistor in the network ANSWER:
in Fig. E2.12. I, = 12 mA,

I, = —4 mA, and
Piyrg = 5.76 W.

Figure E2.12
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+
o(t) CD W 3R,

() i5(0)

CD i5(0) CD i)(0) %Rz Q (1) CD 0 <$,R1

Figure 2.25

(@ (b)

Equivalent circuits.

Figure 2.26
Equivalent circuits.

+
o(7) CTD (1) R, é R, %RN

MULTIPLE-SOURCE/RESISTOR NETWORKS Let us now extend our analysis to
include a multiplicity of current sources and resistors in parallel. For example, consider the
circuit shown in Fig. 2.25a. We have assumed that the upper node is v(¢) volts positive with
respect to the lower node. Applying Kirchhoff’s current law to the upper node yields

01(1) = ix(0) = i5(0) + iy() — i5(1) — ig(1) = 0
or
i) — i3(t) + iy(1) — i6(0) = (1) + i5(0)

The terms on the left side of the equation all represent sources that can be combined
algebraically into a single source; that is,

io(1) = 13(1) = i3() + iy(1) — i6(D)

which effectively reduces the circuit in Fig. 2.25a to that in Fig. 2.25b. We could, of course,
generalize this analysis to a circuit with N current sources. Using Ohm’s law, we can express
the currents on the right side of the equation in terms of the voltage and individual resistances
so that the KCL equation reduces to

i) = (Ri1 + R%)v@

Now consider the circuit with N resistors in parallel, as shown in Fig. 2.26a. Applying
Kirchhoff’s current law to the upper node yields

I(t) = i4(t) + ix(1) + - - + in(0)

1 1 1
=— 4+ —+ 4+ —
(Rl R, RN)v(t) 2.21

or

o = Y@

i,(2) R, 222
where

1 31

— = — 2.23

Rp iZl Ri

so that as far as the source is concerned, Fig. 2.26a can be reduced to an equivalent circuit,
as shown in Fig. 2.26b.

i i) i(t) VO]

+
W0 SR,

i) D

(a) (b)
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The current division for any branch can be calculated using Ohm’s law and the preceding
equations. For example, for the jth branch in the network of Fig. 2.26a,

. u(?
i0=""
Using Eq. (2.22), we obtain
it) = % i,(1) 2.24
J

which defines the current-division rule for the general case.

Given the circuit in Fig. 2.27a, we wish to find the current in the 12-k{) load resistor.

To simplify the network in Fig. 2.27a, we add the current sources algebraically and combine the
parallel resistors in the following manner:

Using these values we can reduce the circuit in Fig. 2.27a to that in Fig. 2.27b. Now,
applying current division, we obtain
_[L
4k + 12k
= —0.25mA

I, = ](1 X 107%)

EXAMPLE 2.19
YAYAYAN

SOLUTION

1mA 2 mA

(0]

S 18k0 CD 9kQ CD 31k C‘) S R.=12k0 CD

4 mA 1mA

(@
Figure 2.27

Circuits used in Example 2.19.

(b)

LN

(PROBLEM-SOLVING STRATEGY

STEP 1. Define a voltage v(f) between the two nodes in this circuit. We know from
KVL that there is only one voltage for a single-node-pair circuit. A polarity is
assigned to the voltage such that one of the nodes is assumed to be at a higher
potential than the other node, which we will call the reference node.

STEP 2. Using Ohm’s law, define a current flowing through each resistor in terms of the
defined voltage.

STEP 3. Apply KCL at one of the two nodes in the circuit.

STEP 4. Solve the single KCL equation for v(#). If v(?) is positive, then the reference
node is actually at a lower potential than the other node; if not, the reference
node is actually at a higher potential than the other node.

SINGLE-NODE-
PAIR CIRCUITS
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LEARNING ASSESSMENT

E2.13 Find the power absorbed by the 6-k(} resistor in the network in Fig. E2.13.

ANSWER:
P =2.67mW.

(D

Figure E2.13

4 mA

24k 26k0 212k
> > >

(25

Series and
Parallel
Resistor
Combinations

We have shown in our earlier developments that the equivalent resistance of N resistors in
series is

Ri=R, +R,+---+Ry 2.25
and the equivalent resistance of N resistors in parallel is found from

1 1 1 1

T 226

R, R R, Ry

Let us now examine some combinations of these two cases.

EXAMPLE 2.20

We wish to determine the resistance at terminals A-B in the network in Fig. 2.28a.

VAYAYA
SOLUTION  Starting at the opposite end of the network from the terminals and combining resistors as
shown in the sequence of circuits in Fig. 2.28, we find that the equivalent resistance at the
terminals is 5 k().
2 kQ 2 kQ 10 kQ) 2kQ 2kQ
AO vV vV A AO VWA A%
6k <4 6kQ 6 kQ 4 12kQ =10 k) +
Ryp — = 4 kQ 1kQ Ryp —» 4 kQ 6 kQ § (6 kO in parallel
[ with 3 kQ)
Bo Y BoO VWA
9 kQ) 2 kO 9 kQ)
(a) (b)
2 kQ 2 kQ
AO VWA AO VWA
) J J 6ka=2k0 + J J ke =9ko +
Ryp—»  4kQZ 26k (6 kY in parallel Ryp—»  4kQS < (6 kQ in parallel
> > > . > > .
with 12 k() with 6 k)
Bo VWA Bo
9 kQ)
© (d)
2 kQ)
A O——M—t
<
Rip— » é 3kQ = (4 kQ in parallel with 12 kQ)
Figure 2.28

Simplification of a
resistance network.

B o—morou«-—$
(e)
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LEARNING ASSESSMENT

E2.14 Find the equivalent resistance at the terminals A-B in the network in Fig. E2.14. ANSWER:
R, = 22 k.
6 kQ) 3kQ
AC VWA : A%
18 k0 26k
RAB —_—

10 kQ

Figure E2.14 BO

LN

(PROBLEM-SOLVING STRATEGY

When trying to determine the equivalent resistance at a pair of terminals of a network com- SIMPLIFYING
posed of an interconnection of numerous resistors, it is recommended that the analysis begin RESISTOR

at the end of the network opposite the terminals. Two or more resistors are combined to foom  COMBINATIONS
a single resistor, thus simplifying the network by reducing the number of components as the

analysis continues in a steady progression toward the terminals. The simplification involves

the following:

STEP 1. Resistors in series. Resistors R, and R, are in series if they are connected end
to end with one common node and carry exactly the same current. They can
then be combined into a single resistor Rs, where Rg = R; + R,.

STEP 2. Resistors in parallel. Resistors R, and R, are in parallel if they are connected to the
same two nodes and have exactly the same voltage across their terminals. They can
then be combined into a single resistor R,,, where R, = R|R)/(R; + R,).

These two combinations are used repeatedly, as needed, to reduce the network to a single
resistor at the pair of terminals.

LEARNING ASSESSMENTS

E2.15 Find the equivalent resistance at the terminals A-B in the circuit in Fig. E2.15. ANSWER:
Ry = 3 k.
4 kQ 4 kQ
AO ; VWA : VWA
Rip — = 6k0 S KO 12k0 S 8k

Figure E2.15 B0
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E2.16 Find R, in Fig. E2.16. ANSWER:
Ry = 12 kL.
A 4kQ 3k0 2kQ
O— W—— M — AN
Ryg —» 8 kQ 12k 2> o <§>sz
O— W——— AW—N—
Figure E2.16 B 4 kQ 4kQ 2kQ

EXAMPLE 2.2
AN

1

A standard dc current-limiting power supply shown in Fig. 2.29a provides 0-18 V at 3 A to
a load. The voltage drop, Vi, across a resistor, R, is used as a current-sensing device, fed back
to the power supply and used to limit the current /. That is, if the load is adjusted so that the
current tries to exceed 3 A, the power supply will act to limit the current to that value. The
feedback voltage, V5, should typically not exceed 600 mV.

If we have a box of standard 0.1-(), 5-W resistors, let us determine the configuration of
these resistors that will provide V, = 600 mV when the current is 3 A.

O
+ 1
Fe——— s 3 3
+ OA ) 010 ( ( (
dc Vi S e R
power — R —
supply OA
Load 010 3’ 3’ 3’
o | All resistors
_ o————— 010
() (b) (©)
Figure 2.29
Circuits used in Example 2.21.
SOLUTION  Using Ohm’s law, the value of R should be
Vi
R = T
_06
3
=020

Therefore, two 0.1-() resistors connected in series, as shown in Fig. 2.29b, will provide the
proper feedback voltage. Suppose, however, that the power supply current is to be limited to
9 A. The resistance required in this case to produce V; = 600 mV is

0.6

R =22
9

= 0.0667 Q)
We must now determine how to interconnect the 0.1-€) resistor to obtain R = 0.0667 ). Since

the desired resistance is less than the components available (i.e., 0.1-()), we must connect the
resistors in some type of parallel configuration. Since all the resistors are of equal value, note
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that three of them connected in parallel would provide a resistance of one-third their value, or
0.0333 ). Then two such combinations connected in series, as shown in Fig. 2.29c¢, would
produce the proper resistance.

Finally, we must check to ensure that the configurations in Figs. 2.29b and ¢ have not
exceeded the power rating of the resistors. In the first case, the current / = 3 A is present in
each of the two series resistors. Therefore, the power absorbed in each resistor is

P=1°R
= (3)%0.1)
=09W

which is well within the 5-W rating of the resistors.

In the second case, the current / = 9 A. The resistor configuration for R in this case is
a series combination of two sets of three parallel resistors of equal value. Using current
division, we know that the current / will split equally among the three parallel paths and,
hence, the current in each resistor will be 3 A. Therefore, once again, the power absorbed by
each resistor is within its power rating.

53

We wish to find all the currents and voltages labeled in the ladder network shown in

EXAMPLE 2.22

Fig. 2.30a. VATAYAN
Iy I Il I I Figure 2.30
v’\/\l‘ V%A vI\/\IA vI\/\IA vI\/\IA .
9kQ I, 3k L, 9 kQ 9k I, 3kQ Analysis of a ladder
+ + + + +J network.
12v<i> ‘E,éem ‘@5,4'@ ‘35,3"9 12v<ﬁ> Vféekg Vi§3kg
1y I I
(@) )
3 1 iv
11 1TmA + 9V _ TmA + 2 _ —mA +8 _
vI\NA VIWA v’\/\l‘ vll\/\lA
9 kO 9kQ 1A 3k0 3mA 9k
+ + 2 + +
12\/@) v,S 3k 12v Ct) 3VS 6k EREIT %v§3kﬂ
(© (d)
SOLUTION

To begin our analysis of the network, we start at the right end of the circuit and combine
the resistors to determine the total resistance seen by the 12-V source. This will allow us to
calculate the current /,. Then employing KVL, KCL, Ohm’s law, and/or voltage and current
division, we will be able to calculate all currents and voltages in the network.

At the right end of the circuit, the 9-k{) and 3-k{) resistors are in series and, thus, can be
combined into one equivalent 12-k{) resistor. This resistor is in parallel with the 4-k() resis-
tor, and their combination yields an equivalent 3-k{} resistor, shown at the right edge of the
circuit in Fig. 2.30b. In Fig. 2.30b the two 3-k() resistors are in series, and their combination
is in parallel with the 6-k() resistor. Combining all three resistances yields the circuit shown
in Fig. 2.30c.
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Applying Kirchhoff’s voltage law to the circuit in Fig. 2.30c yields
1,9k + 3k) = 12

I, = 1 mA

V, can be calculated from Ohm’s law as

V., = I1,(3k)

=3V
or, using Kirchhoff’s voltage law,
V, =12 — 9kI,
=12-9
=3V

Knowing /; and V,, we can now determine all currents and voltages in Fig. 2.30b. Since
V, = 3V, the current /, can be found using Ohm’s law as

=%mA

Then, using Kirchhoff’s current law, we have

L =15L+1L

1><10-3=%><1o-3+13

Note that the /5 could also be calculated using Ohm’s law:

V, = 3k + 3K,
3

L= —
37 6k

=%mA

Applying Kirchhoff’s voltage law to the right-hand loop in Fig. 2.30b yields

Va_Vb:3kI3
_3
3-V,=3
3

V, ==V
b2

or, since V,, is equal to the voltage drop across the 3-k{) resistor, we could use Ohm’s law as

Vb = 3k13
3
==V
2
We are now in a position to calculate the final unknown currents and voltages in Fig. 2.30a.
Knowing V), we can calculate /, using Ohm’s law as

Vb = 4k14
3
14 =S %

= %mA
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Then, from Kirchhoff’s current law, we have

L=1+1I
L3 =3%x10°+1
2 8 ’
Is = L mA
> 8
We could also have calculated /5 using the current-division rule. For example,
4k
i =————I
7 4k + 9k + 3k)°
1
= —mA
g M
Finally, V. can be computed as
Ve = 15(3k)
3
==V
8

V. can also be found using voltage division (i.e., the voltage V, will be divided between the
9-k() and 3-k() resistors). Therefore,

_ 3k
%_[%+9khz
3
==V
8
Note that Kirchhoff’s current law is satisfied at every node and Kirchhoff’s voltage law is
satisfied around every loop, as shown in Fig. 2.30d.

The following example is, in essence, the reverse of the previous example in that we
are given the current in some branch in the network and are asked to find the value of the
input source.

Given the circuit in Fig. 2.31 and I, = 1/2 mA, let us find the source voltage V,,. EXAMPLE 2 . 2 3
AAYA

If I, = 1/2 mA, then from Ohm’s law, V,, = 3 V. V, can now be used to calculate I; = I mA. SOLUTION
Kirchhoft’s current law applied at node y yields

L=05L+1,

= 1.5mA
Then, from Ohm’s law, we have
V, = (1.5 X 107)(2k)
=3V

Since V, + V, is now known, /5 can be obtained:
VYVt
T3k + 1k
= 1.5mA

S

Applying Kirchhoff’s current law at node x yields
I =1+ I
=3 mA
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Now KVL applied to any closed path containing V, will yield the value of this input source.
For example, if the path is the outer loop, KVL yields

—V, + 6kl, + 3kls + 1klIs + 4kl;, = 0
Since I} = 3 mA and I5 = 1.5 mA,
V,=36V
If we had selected the path containing the source and the points x, y, and z, we would obtain
=V, +6kl, +V,+V,+4kl, =0

Once again, this equation yields

V,=36V
Figure 2.31 6kQ I, x 3kQ 15
- . VWA VWA
Example circuit for analysis.
+
V.32k0

3k0 § v, § 6 kO
I _ I
VWA
4kQ ¢
[PROBLEM-SOLVING STRATEGY

ANALYZING STEP 1. Systematically reduce the resistive network so that the resistance seen by the source
CIRCUITS is represented by a single resistor.
CONTAINING A STEP 2. Determine the source current for a voltage source or the source voltage if a current
SINGLE SOURCE source is present.
AND A SERIES-

STEP 3. Expand the network, retracing the simplification steps, and apply Ohm’s law,
PARALLEL KVL, KCL, voltage division, and current division to determine all currents and
INTERCONNECTION voltages in the network.

OF RESISTORS

LEARNING ASSESSMENTS

E2.17 Find V, in the network in Fig. E2.17. ANSWER:
20kQ 40kQ V,=2V.

v CJ_D 30k02 20k0 2 v,

Figure E2.17
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E2.18 Find Vy in the circuit in Fig. E2.18. ANSWER:
VS =9V.
20 kQ
VI\/\IA
v Cj) 260k 2120 k0
0.1mA
Figure E2.18
E2.19 Find Iy in the circuit in Fig. E2.19. ANSWER:
Ig = 0.3 mA.
90 kQ
VMA
+

I C) 60k03 30k 2 3V
> >

Figure E2.19 o
E2.20 Find V, in Fig. E2.20. ANSWER:
V,=12V.
+
vV, S3k0
_ CD BmA S6ko CD 15 mA
6 kO
Figure E2.20
E2.21 Find I, in Fig. E2.21. ANSWER:
Iy = —4 mA.
4kQ
12 kO % CD 9mA
303 S6k
. Iy
Figure E2.21
E2.22 Find V,, V|, and V, in Fig. E2.22. ANSWER:
V, =333V,
B Vi=—4V,and V, =4 V.
S 10k 2200 3k v 34k
+ 4 kQ
ANV
+ +
v, 2560 210k 16V<1L> 2k 2 8k0 2 v,
Figure E2.22 0
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E2.23 Find V, and V| in Fig. E2.23.

Figure E2.23

ANSWER:
V,=-60V;
V,=10V.
S10k0 S6ko
. @ 12ke 2V,
20 mA
+
Vo §4k9

EXAMPLE 2.24

AN

Consider the network in Fig. 2.32a. Given that V,; = V, = 4V, find the value of the voltage
source Vg and the voltage across the current source V.

By using Kirchhoff’s laws and Ohm’s law, we can calculate the desired quantities. Since
Vpe = 4V, using Ohm’s law we obtain Iy = 2 A. Applying Kirchhoff’s current law

Figure 2.32 I A

I
Example circuit s +
containing a current 2
source. Ve Ct) ‘s 20 3 ACL) Vip
>
; 8V
5 C D =
B VWA @ ;
A Iy T Vs "
S10 5»39 ézn V,=4V
E —
(@)
A 3A
9A 6A +
+<
VSZSOVCtD 12vVZ20 3A<D Vap=20V
8V
5 ALY (T D -
6A 60 aa 7 18] *
- + <
6vV310 1v330 220 V,=4vV
N _
E —

(b)
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at node D yields
L+ 1L =1

Solving for 7; we obtain

Then since
Vee = Vep + Vor
=8+4
=12V
I can be obtained from Ohm’s law as 4 A. Kirchhoff’s current law at node E yields
L+1,+1g=0
and hence I, = —6 A. Then since
Ve = Veg + Vig
=12 + (6)(1)
=18V
Ohm’s law yields Is = —3 A. At node C,
L+I=1I+1I
Solving for the only unknown /, yields /, = 6 A. Then
Vac = (6)(2)
=12V
The only remaining unknown current is /;. At node A
L =1+
=9A
Now Kirchhoff’s voltage law around the upper left-hand loop yields
Vs = Vac— Ve =0
or
Ve=30V
Kirchhoff’s voltage law around the upper right-hand loop yields
Vie = Vup +8=0
or
Vip =20V

The circuit with all voltage and currents labeled is shown in Fig. 2.32b. Note carefully that
Kirchhoff’s current law is satisfied at every node and Kirchhoff’s voltage law is satisfied
around every loop.

To provide motivation for this topic, consider the circuit in Fig. 2.33. Note that this network

has essentially the same number of elements as contained in our recent examples. However,

ircui i ini Wye — Delta
when we attempt to reduce the circuit to an equivalent network containing the source V, and
an equivalent resistor R, we find that nowhere is a resistor in series or parallel with another. Transformations
Therefore, we cannot attack the problem directly using the techniques that we have learned thus
far. We can, however, replace one portion of the network with an equivalent circuit, and this
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Figure 2.33

Network used to illustrate
the need for the wye =—
delta transformation.

(b)

Figure 2.34

Delta and wye resistance networks.

conversion will permit us, with ease, to reduce the combination of resistors to a single equivalent
resistance. This conversion is called the wye-to-delta or delta-to-wye transformation.

Consider the networks shown in Fig. 2.34. Note that the resistors in Fig. 2.34a form a
A (delta) and the resistors in Fig. 2.34b form a’Y (wye). If both of these configurations are
connected at only three terminals a, b, and ¢, it would be very advantageous if an equivalence
could be established between them. It is, in fact, possible to relate the resistances of one net-
work to those of the other such that their terminal characteristics are the same. This relation-
ship between the two network configurations is called the Y-A transformation.

The transformation that relates the resistances R,, R,, and R; to the resistances R,,, R),,
and R, is derived as follows. For the two networks to be equivalent at each correspond-
ing pair of terminals, it is necessary that the resistance at the corresponding terminals be
equal (e.g., the resistance at terminals a and b with ¢ open-circuited must be the same for
both networks).

Therefore, if we equate the resistances for each corresponding set of terminals, we obtain
the following equations:

_ _ RyR, + Ry
Ry =R+ Ry = TR TR
Ry(R, + Ry)
RbL‘ - Rb + RC - m 2.27
Ri(R, + Ry)
R =R+ R = ¥R+ R,

Solving this set of equations for R,, R, and R, yields

RR

R =__ "2

9 R +R,t Ry
RR;

N —

R+ R, + Ry
RRy

R=—-——

¢ Rt R,+ Ry

2.28

Similarly, if we solve Eq. (2.27) for R,, R,, and R;, we obtain
_ R.R,+ R,R.+ R.R.
11— Rb
R.R,+ R,R.+ R,R,
27 R.
R.R, + R,R.+ R.R.
3= R

2.29

a
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Equations (2.28) and (2.29) are general relationships and apply to any set of resistances
connected in a Y or A. For the balanced case where R, = R, = R, and R, = R, = R;, the
equations above reduce to

Ry = =R, 2.30

and
R, = 3Ry 2.31

It is important to note that it is not necessary to memorize the formulas in Egs. (2.28) and
(2.29). Close inspection of these equations and Fig. 2.34 illustrates a definite pattern to the
relationships between the two configurations. For example, the resistance connected to point
a in the wye (i.e., R,) is equal to the product of the two resistors in the A that are connected
to point a divided by the sum of all the resistances in the delta. R, and R, are determined in
a similar manner. Similarly, there are geometrical patterns associated with the equations for
calculating the resistors in the delta as a function of those in the wye.

Let us now examine the use of the delta —— wye transformation in the solution of a
network problem.

Given the network in Fig. 2.35a, let us find the source current /.

- Figure 2.35
S
J J Circuits used in
12k S 18kQS Example 2.25.
6 kQ)
<+>12v VW
403 9k02

(@ (b)

Note that none of the resistors in the circuit are in series or parallel. However, careful examina-
tion of the network indicates that the 12k-, 6k-, and 18k-ohm resistors, as well as the 4k-, 6k-,
and 9k-ohm resistors each form a delta that can be converted to a wye. Furthermore, the 12k-,
6k-, and 4k-ohm resistors, as well as the 18k-, 6k-, and 9k-ohm resistors, each form a wye that
can be converted to a delta. Any one of these conversions will lead to a solution. We will per-
form a delta-to-wye transformation on the 12k-, 6k-, and 18k-ohm resistors, which leads to the
circuit in Fig. 2.35b. The 2k- and 4k-ohm resistors, like the 3k- and 9k-ohm resistors, are in
series and their parallel combination yields a 4k-ohm resistor. Thus, the source current is

I = 12/(6k + 4K)
= 12 mA

EXAMPLE 2.25
YAYAYAN

SOLUTION

A Wheatstone bridge circuit is an accurate device for measuring resistance. This circuit, shown
in Fig. 2.36, is used to measure the unknown resistor R,. The center leg of the circuit contains a
galvanometer, which is a very sensitive device that can be used to measure current in the micro-
amp range When the unknown resistor is connected to the bridge, R; is adjusted until the current
in the galvanometer is zero, at which point the bridge is balanced. In this balanced condition

R R

so that

EXAMPLE 2.26
A
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SOLUTION

Figure 2.37

Diagrams used in
Example 2.26.

Figure 2.36
The Wheatstone bridge circuit.

Engineers also use this bridge circuit to measure strain in solid material. For example, a
system used to determine the weight of a truck is shown in Fig. 2.37a. The platform is sup-
ported by cylinders on which strain gauges are mounted. The strain gauges, which measure
strain when the cylinder deflects under load, are connected to a Wheatstone bridge as shown
in Fig. 2.37b. The strain gauge has a resistance of 120 ) under no-load conditions and
changes value under load. The variable resistor in the bridge is a calibrated precision device.

Weight is determined in the following manner. The AR; required to balance the bridge
represents the A strain, which when multiplied by the modulus of elasticity yields the A stress.
The A stress multiplied by the cross-sectional area of the cylinder produces the A load, which
is used to determine weight.

Let us determine the value of R; under no load when the bridge is balanced and its value
when the resistance of the strain gauge changes to 120.24 () under load.

Using the balance equation for the bridge, the value of R; at no load is

R,
R3 = R_sz

- (%)(120)

109.0909 Q)

Under load, the value of R; is

Ry = (100

m) (120.24)

= 109.3091 Q
Therefore, the AR5 is

AR; = 109.3091 — 109.0909
= 0.2182 Q)

IC_IWS a O O / Platform

(@)

R,=100Q

Strain gauge

(d)
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LEARNING ASSESSMENTS

E2.24 Determine the total resistance Ry in the circuit in Fig. E2.24. ANSWER:
Ry = 34 kQ.
6 kQ
O VWA
54 kQ 36 kQ

Ry — =

18 kQ
_ 2kQ
Figure E2.24 o VWA
E2.25 Find V,, in the network in Fig. E2.25. ANSWER:
V,=24V.
k02 212k
12 kQ
4 mA C) VA
+
2k0 2 212k v,
Figure E2.25 o
E2.26 Find I, in Fig. E2.26. ANSWER:
I, =—-12A.
1803 2180
18 Q)
Y CD 3A
120 3} 3} 60Q
Figure E2.26 h
In Chapter 1 we outlined the different kinds of dependent sources. These controlled sources @
are extremely important because they are used to model physical devices such as npn and pnp ) . .
bipolar junction transistors (BJTs) and field-effect transistors (FETs) that are either metal- Circuits with
oxide-semiconductor field-effect transistors (MOSFETSs) or insulated-gate field-effect tran- De pendent
sistors (IGFETs). These basic structures are, in turn, used to make analog and digital devices. Sources

A typical analog device is an operational amplifier (op-amp). This device is presented in
Chapter 4. Typical digital devices are random access memories (RAMs), read-only memo-
ries (ROMs), and microprocessors. We will now show how to solve simple one-loop and
one-node circuits that contain these dependent sources. Although the following examples are
fairly simple, they will serve to illustrate the basic concepts.
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LN

[PROBLEM-SOLVING STRATEGY

CIRCUITS WITH
DEPENDENT
SOURCES

STEP 1. When writing the KVL and/or KCL equations for the network, treat the dependent
source as though it were an independent source.

STEP 2. Write the equation that specifies the relationship of the dependent source to the con-
trolling parameter.

STEP 3. Solve the equations for the unknowns. Be sure that the number of linearly inde-
pendent equations matches the number of unknowns.

The following four examples will each illustrate one of the four types of dependent
sources: current-controlled voltage source, current-controlled current source, voltage-
controlled voltage source, and voltage-controlled current source.

EXAMPLE 2.27
YN

SOLUTION

Let us determine the voltage V, in the circuit in Fig. 2.38.

Figure 2.38 I, 3kQ
Circuit used in A i
Example 2.27. v, =2000 I,

12V<i> 5k 2 v,

Applying KVL, we obtain
—12 +3kl; — V, + 5kI;, =0

where
V, = 20001,
and the units of the multiplier, 2000, are ohms. Solving these equations yields
I,=2mA
Then
V, = (G kI,
=10V

EXAMPLE 2.28
YAYAN

Given the circuit in Fig. 2.39 containing a current-controlled current source, let us find the
voltage V,,.

Figure 2.39
+
Circuit used in 2kQ
Example 2.28. 10 mA G) 23kQ 41, Vs
+ >
4 kQ
v, I, _
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Applying KCL at the top node, we obtain SOLUTION
10X 107 4 =5 4+ VS g =g
2k + 4k 3k ©
where
Vs
1, = 3K
Substituting this expression for the controlled source into the KCL equation yields
V. Vs 4V,
B, Y T8 TS
S T
Solving this equation for Vg, we obtain
Ve=12V
The voltage V, can now be obtained using a simple voltage divider; that is,
_ 4k
- [Zk +ax s
=8V

The network in Fig. 2.40 contains a voltage-controlled voltage source. We wish to find V, EXAMPLE 2 . 29

in this circuit. VAYAYAN
1 3kQ Figure 2.40
Wy, AN et .
\/ +  Circuit used in
2V, ) Example 2.29.
12v<j> k0 S v,

Applying KVL to this network yields SOLUTION
—12 + 3kl + 2V, + 1kl =0
where
V,= 1kl
Hence, the KVL equation can be written as
—12 + 3kl + 2kl + 1kl =0
or
I =2mA

Therefore,
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EXAMPLE 2.30

AN

SOLUTION

An equivalent circuit for a FET common-source amplifier or BJT common-emitter amplifier
can be modeled by the circuit shown in Fig. 2.41a. We wish to determine an expression for
the gain of the amplifier, which is the ratio of the output voltage to the input voltage.

Figure 2.41 Lo R’

\'4

Example circuit
containing a +

voltage-controlled () J_F) st <l> 8m Vg(D) <$R3 <$R4 %RS 0,()
’l)g(l) > >

current source.

+

(@)
iy (1) R,

\ 4

+
+

v(0) CJ_D R,3 <l> gm0 SR, 0,0
> Ug([) >

(b)

Note that although this circuit, which contains a voltage-controlled current source, appears
to be somewhat complicated, we are actually in a position now to solve it with techniques
we have studied up to this point. The loop on the left, or input to the amplifier, is essentially
detached from the output portion of the amplifier on the right. The voltage across R, is v,(%),
which controls the dependent current source.

To simplify the analysis, let us replace the resistors R;, R,, and Rs with R; such that

1r_r,. 1,1
R, R, R, R
Then the circuit reduces to that shown in Fig. 2.41b. Applying Kirchhoff’s voltage law to
the input portion of the amplifier yields
vy = (DR, + Ry)
and
v(1) = i)(DR,

Solving these equations for v,(7) yields
v, () = mvi(l‘)

From the output circuit, note that the voltage v,(#) is given by the expression
v,(t) = — gmvg(t)RL
Combining this equation with the preceding one yields

_ _ngLRZ
u,(f) = R +R, v(1)
Therefore, the amplifier gain, which is the ratio of the output voltage to the input voltage, is
given by

vo(t) _ ngLRZ
v(1) R + R,
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Reasonable values for the circuit parameters in Fig. 2.41a are R, = 100 , R, = 1 kQ,
gn=0.04S, Ry = 50k, and R, = R5 = 10 k(). Hence, the gain of the amplifier under these
conditions is

u(f) _ —(0.04)(4.545)(10%)(1)(10°)
y (1) (1.1)(10%)
= —165.29

Thus, the magnitude of the gain is 165.29.

67

At this point it is perhaps helpful to point out again that when analyzing circuits with depen-
dent sources, we first treat the dependent source as though it were an independent source when
we write a Kirchhoff’s current or voltage law equation. Once the equation is written, we then
write the controlling equation that specifies the relationship of the dependent source to the
unknown variable. For instance, the first equation in Example 2.28 treats the dependent source
like an independent source. The second equation in the example specifies the relationship of the
dependent source to the voltage, which is the unknown in the first equation.

LEARNING ASSESSMENTS

E2.27 Find V,, in the circuit in Fig. E2.27. ANSWER:
V,=12V.
% 2V
I+ A — A
AN Z—l-\

4kQ N +

6V Cﬁ) 8k0 < v,

Figure E2.27
E2.28 Find V, in the network in Fig. E2.28. ANSWER:
V,=8V.
w3
+
Yo <T> Vs 2 6k $—o C‘) 2mA
2000 < .

2 kQ g v,

Figure E2.28 _

£2.29 Find V, in Fig. E2.29. ANSWER:

5 kQ

AN
AW 4D M
\/
+ vV -
12v<f> A C_D 36V

Figure E2.29 5kQ
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E2.30 Find V, in Fig. E2.30. ANSWER:
V, = —32/3 V.
4 kQ - x +
M\ @ MN
Ny 8 kQ
05V, <f> v, Cl) 50V
. - 8 kQ)
Figure E2.30 AN
£2.31 Find 7, in Fig. E2.31. ANSWER:
I,= —15mA.

10 mA CD 2, <T> 2 kQ

Figure E2.31

3 mACD 2 5ko 210k

E2.32 Find V, in Fig. E2.32.

ANSWER:
V,=16V.

I

x

+

4 k9§ 6 mA CD 6 kQ § 051, <T> <212 oy

Figure E2.32

E2.33 If the power supplied by the 3-A current source in Fig. E2.33 is 12 W, find Vs and the ANSWER:

power supplied by the 10-V source. Vg =42V,
30 W.

3A

)
30 4 Q)
MN MAN

Vs(f) 603 S50

A

Figure E2.33

1ov<f>

SUMMARY

m Ohm’s law V = IR

m The passive sign convention with O0hm’s law The current
enters the resistor terminal with the positive voltage refer-
ence.

B Kirchhoff's current law (KCL) The algebraic sum of the cur-
rents leaving (entering) a node is zero.

m Kirchhoff's voltage law (KVL) The algebraic sum of the
voltages around any closed path is zero.

m Solving a single-loop circuit Determine the loop current by

applying KVL and Ohm’s law.

W Solving a single-node-pair circuit Determine the voltage

between the pair of nodes by applying KCL and Ohm’s law.

B The voltage-division rule The voltage is divided between

two series resistors in direct proportion to their resistance.

m The current-division rule The current is divided between

two parallel resistors in reverse proportion to their resistance.
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W Short circuit Zero resistance, zero voltage; the current in

m The equivalent resistance of a network of resistors
the short is determined by the rest of the circuit.

Combine resistors in series by adding their resistances.
Combine resistors in parallel by adding their conductances. m Open circuit Zero conductance, zero current; the voltage

The wye-to-delta and delta-to-wye transformations are also an across the open terminals is determined by the rest of the circuit.

aid in reducing the complexity of a network.

PROBLEMS
2.1 Determine the current and power dissipated in the resistor in 2.6 An automobile uses two halogen headlights connected as
Fig. P2.1. shown in Fig. P2.6. Determine the power supplied by the
‘ battery if each headlight draws 3 A of current.
9V ) 12Q
Figure P2.1

2.2 Determine the voltage across the resistor in Fig. P2.2 and the
power dissipated.

ZA( } < 120 12V

Figure P2.2 Figure P2.6

2.3 In the network in Fig. P2.3, the power absorbed by R, is

20 mW. Find R,. 2.7 Many years ago a string of Christmas tree lights was manu-

factured in the form shown in Fig. P2.7a. Today the lights are

manufactured as shown in Fig. P2.7b. Is there a good reason
2 A 3 R, for this change?
o—© D)
Figure P2.3 N4 N4 =4
2.4 In the network in Fig. P2.4, the power absorbed by G, is
20 mW. Find G.,. @
<
12mA 26,
Figure P2.4
(b)
2.5 A model for a standard two D-cell flashlight is shown in Ficure P2.7
Fig. P2.5. Find the power dissipated in the lamp. & ’
1-Q lamp . . -
@ 2.8 Find I, I,, and I; in the network in Fig. P2.8.
L
1.5V
L~
1.5V

R aa

Figure P2.5

Figure P2.8
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2.9 Find /; in the network in Fig. P2.9.

VWA VWA

CD 20 mA

VWA
VWA

1y

4 mA

Figure P2.9

2.10 Find [, in the network in Fig. P2.10.

VWA VWA

6 mA
€ 3

VWA VWA
Figure P2.10

v’\/\l‘

2mA

2.11 Find [, in the circuit in Fig. P2.11.

I

VWA

4 mA
A\ VWA

O OLL -

2mA

Figure P2.11

2.12 Find I, and [, in the circuit in Fig. P2.12.

5mA
‘é 3 CD 4mA
Lo~ 2mA
N W
©, 3 3
I, 3mA
Figure P2.12

2.13 Find I,, I, and I, in the network in Fig. P2.13.

12 mA C)

V%A
V%A

3mA 1

)
—/

2mA

VWA
I
3
IZ
Figure P2.13

2.14 Find [, in the circuit in Fig. P2.14.

‘2 <>4mA

3

>

I

X

Drom o

v’\/\l‘

2mA

Figure P2.14

2.15 Find [, in the network in Fig. P2.15.

%

>

4 mA

ONE:

12 mA

Figure P2.15

2.16 Find [, in the network in Fig. P2.16.

v’\/\l‘

4

VWA

®

N
3
>

2mA

V%A

Figure P2.16

2.17 Find V,, in the circuit in Fig. P2.17.

a

b

v Ci)

VW
toav

VWA
PN
<

d

Figure P2.17

37



2.18 Find [, in the network in Fig. P2.18.

o

VWA VWA

v’\/\l‘

VWA
VWA

(D)

Figure P2.18

2.19 Find I}, I,, and 5 in the network in Fig. P2.19.

nmA<I> % %
vy, - e
2, <T> 3 <T> 2,

Figure P2.19

2.20 Find Vj, and V,, in the circuit in Fig. P2.20.

Y = )
_ 12V 3V +
<
2v§ S3v
+ —
VWA . VWA
g —2v + f -1Vt e
Figure P2.20

2.21 Given the circuit diagram in Fig. P2.21, find the following
voltages: Vi, Vi Veeor Vi Vir Vaer Vi Vip Vi and V..

8V 12V
A AR e F
LI LI

L1 L

£ S TS B
L1 L

I:]ZOV

+ + +
mv[] [jsv []MV
. — - — -

g ¥ LA - LA+
12V 4V

Figure P2.21

PROBLEMS

2.22 Find Vg and V), in the circuit in Fig. P2.22.

A - 6V 4 B

E + 4V _ D
Figure P2.22

2.23 Find V, and V, in the circuit in Fig. P2.23.

Figure P2.23

2.24 Find V,, in the circuit in Fig. P2.24.

a b c
VWA 4}
+ o4y N
3V, +
nv(i) Sv,=2v
Figure P2.24

2.25 Find V,, and V., in the circuit in Fig. P2.25.

a b c
VWA ° VWA
v - "
4w<§>>
VWA
e + 1V ~ d
Figure P2.25

71
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2.26 Find V,, in the circuit in Fig. P2.26.

RESISTIVE CIRCUITS

\%
Ix — x +
A% . @ VWA
4Q 120
12V
ZIX <i> + Va - <
Figure P2.26

2.27 Find V|, V,, and Vj; in the network in Fig. P2.27.

+
<
+
6V
3 ’
- -V, o+
- A
+ N +
4V
< <
3 éev s
Figure P2.27

2.28 Find V, in the network in Fig. P2.28.

V.
+ X —
Y, O Y,
40 N+ 20
4v,
v Cl) Va
Figure P2.28

2.29 Find V|, V,, and Vj in the network in Fig. P2.29.

+
v3 <jr> 4v, Cf) 6V
- v, +
4—_\ Y%
\_/ + +
4V
v C_F) 2V, 2v,

Figure P2.29

12kQ

VWA
Vg Cj) 9kQ S
Figure P2.30

2.30 If V, = 3 V in the circuit in Fig. P2.30, find V.

2.31 Find the power supplied by each source in the circuit in

Fig. P2.31.
4 kQ 2 kQ)
ANV /{_) ANV
-/
12V
6V Cj)
M M
3kQ 3kQ
Figure P2.31

2.32 The 10-V source absorbs 2.5 mW of power. Calculate V,,

and the power absorbed by the dependent voltage source in

Fig. P2.32.

Figure P2.32

2.33 Find V), in the network in Fig. P2.33.

a b c
A% A%
3kQ 1kQ
12V CJ_FD
d
Figure P2.33

2.34 Find V| in the network in Fig. P2.34.

Ve +
VWA VWA
10k T 5k0
Ci 25V v,

&

Figure P2.34



2.35 Find the power absorbed by the dependent source in the
circuit in Fig. P2.35.

4 kQ 10 kQ

20V e lL> 20001,

6 kQ) 10 kQ)
Figure P2.35

2.36 In the network in Fig. P2.36, find V., V,;, and Vy, if I = 3 A.

VX
A B C
w0
20
<
19% 320
F D
+ <
36V<_> gm
1

Figure P2.36

2.37 In the network in Fig. P2.37, find Vif V3 = 6 V.

A 1kQ B 4 kQ) C

v’V\IA v
< /
2kQ é/ Vep Vs
VWA :
E 3kQ D
Figure P2.37

2.38 Find Vj in the circuit in Fig. P2.38, if Vp; = 18 V.

A 3kQ B 2kQ C

VMA/ v
%<£> Ve 12V
/ VWA o
E 1kQ D
Figure P2.38
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2.39 Find V, in the network in Fig. P2.39.

20 10
vm‘ vm‘
+
203 C—D Y
4v
v, Ci) 210
Figure P2.39

2.40 If the 12-V source in the network in Fig. P2.40 absorbs
36 W, find R and V|,

10 10
Vm‘ v’\/\l‘
Ct) 24V
12V Ci)
+
R 3 v,
Figure P2.40

2.41 If Vx = —12V in the network in Fig. P2.41, find Vs and V.

A 1 10 B
A%

+
102 203 Vy
D C
Figure P2.41

2.42 Calculate the power absorbed by the dependent source in
the circuit in Fig. P2.42.

4 kQ 2kQ
A\/v\v \I__/ ANV
12v \
15V, <I> Vi 6 kQ
ANV A
3kQ 3kQ

Figure P2.42
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2.43 Find V, and V,, in the circuit in Fig. P2.43.

;] 20 2V,
12V Ci) v, v, Cj) 24V
A% A%
20 40
Figure P2.43

2.44 Find V, and the power absorbed by the 2 k() resistor in

Fig. P2.44.
+ Vo -
1kQ 2V,
vy AN
\/ +
+ <
v C_) 20 S Vi
WA o
3kQ
Figure P2.44

2.45 Find the power absorbed or supplied by the 12-V source in
the network in Fig. P2.45.

2V !
/
4v, )W
+ +
v, 2kQ 403 v,
Figure P2.45
2.46 Find V, in the circuit in Fig. P2.46.
- Vy +
6V
)
1kQ
7 1kQ
+
2V 2kQ v,
Figure P2.46

2.47 Find I, in the network in Fig. P2.47.

12 mA C‘) 2kQ 6 kQ
IO
Figure P2.47
2.48 Find I, in the network in Fig. P2.48.
6 kQ 12 mA 12 kQ)
I[)
Figure P2.48

2.49 Find the power supplied by each source in the circuit in
Fig. P2.49.

4mACD 1kQ

Figure P2.49

zmg 2mA<D smg

2.50 Find the current /, in the circuit in Fig. P2.50.

§4k9 G>7mA 1kQ §2kn C>3mA §5k9

1y
Figure P2.50
2.51 Find Vj in the network in Fig. P2.51.
<
1 kﬂg> é 1kQ )

V.

2ea (1) <T T
+
1 kﬂg> Vy

Figure P2.51

$3kQ

‘gnm



2.52 Find [, in the circuit in Fig. P2.52.

1kQ

Figure P2.52

2.53 Find /, in the network in Fig. P2.53.

0

‘gnm

%

Figure P2.53

1kQ
Vx
'3
1kQ
L

o Vy
2.54 Find V, in the circuit in Fig. P2.54.
103
203 <l> K 220 CDzA [
> 2 +
3
30
> VX

Figure P2.54

2.55 Find [, in the network in Fig. P2.55.

0

Ix

3kQ

4 kQ

6 kQ)

Figure P2.55
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2.56 Find I, in the network in Fig. P2.56.

4 kQ

12 mA C)

3

>

I

4

23k0

Figure P2.56

2.57 Find I, in the network in Fig. P2.57.

60

vI\/\IA

803

\'4

4Q

v’\/\l‘

o CD 5A

Figure P2.57

+

2.58 Determine /; in the circuit in Fig. P2.58.

75

o

+

6 mA

- viSek C‘) <l

Figure P2.58

2.59 Find R, in the network in Fig. P2.59.

A
O VWA

2kQ

1kQ

RAB —_—

O

<

4 kQ

\'

6 kQ
3kQ

B

Figure P2.59
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2.65 Find R, in the circuit in Fig. P2.65.

2.60 Find R, in the circuit in Fig. P2.60.
A 2k0 2k0
C v’\/\l‘ v’\/\lA vll\/\lA A A
2kQ 2kQ 1k W YW
Rip —» gzkﬂ gzkn S1k0 203 %2"9
>
2kQ 2kQ 1kQ
A A b 4 kQ 4 kQ
% VW VW VW —— AN A
Figure P2.60 J OA )
2kQ 5 - Ry é 2kQ
(o]
2.61 Find R, in the circuit in Fig. P2.61. B
VWA VWA
A 2kQ 2kQ
O W% VWA VWA Figure P2.65
9 kQ) 2kQ 2kQ
Rag , 12 kQ 3 ‘é 4kQ 3 2k  2.66 Find the equivalent resistance R,, in the network in
" 1 Fig. P2.66.
O
B
Figure P2.61 ‘5129
>
2.62 Find R, in the network in Fig. P2.62. 120
VWA
A 5kQ 4 kQ
O VWA VWA
< <
no o
4kQ 1 1
Ry —  6kQ 3kQ 8k
3kQ
O | O
o > Reg
B
, n03 2n0 2na
Figure P2.62 > > >
2.63 Find R,; in the circuit in Fig. P2.63.
Figure P2.66
VWA
12kQ
é AN AN 2.67 Find R,y in the network in Fig. P2.67.
2 kQ 6 kQ
A
< <
Rup —» S 4ko S 12k0
120
O
B
Figure P2.63 Rap
2.64 Find R,; in the network in Fig. P2.64.
v’\/\l‘
6 kQ
A B
C v’\/\l‘ v’\/\lA
6 kQ) 2kQ Figure P2.67
<
Rip —» é 6 kQ
(e,
B

Figure P2.64



2.68 Given the resistor configuration shown in Fig. P2.68, find
the equivalent resistance between the following sets of ter-

minals: (1) @ and b, (2) b and ¢, (3) a and ¢, (4) d and e,
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2.71 Determine the total resistance, Ry, in the circuit in Fig. P2.71.

%11@

24 kQ) 9 kQ)
(5)aande, (6) cand d, (7) a and d, (8) c and e, (9) b and O AMN AN
d, and (10) b and e.
24 kQ 24 kQ 18 kQ
a
6 kQ
o Ry —
> 10Q >
% 50 % 50 8 kQ) 8 kQ 9 kQ)
b d ©
Oo— Figure P2.71
e
> >
4Q 40
g 12Q g
C
O
Figure P2.68
2.69 Determine the total resistance, Ry, in the circuit in Fig. P2.69.
12 kQ) 12 kQ)
M MV
4 kQ) 12 kQ)
O NN —\V\V\N— J
12 kQ)
2k0 12k %12 kQ 2
12 kQ)
RT—> ANV A\N\v
1kQ
1kQ 12 kQ) 12 kQ) J
12 kQ) 12 kQ)
12kQ 12 kQ
O b
Figure P2.69

2.70 Determine the total resistance, Ry, in the circuit in Fig. P2.70.

16 kO 6k
A A
2k0 16 kO
o—MW —AM—b )
d S 6k
33 e énm 6k :
12k >
Ry —>
3k0
2 12102 nko 212k
12k0
o . :

Figure P2.70
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2.72 Find the power supplied by the source in the network in

RESISTIVE CIRCUITS

Fig. P2.72. All resistors are 12 k().

MN

12A

Figure P2.72

2.73 Find [, and V, in the circuit in Fig. P2.73.

%4 kQ

v’\/\l‘ v’\/\l‘
2kQ 8 k()
<
12V Ci) ée kQ
Il
Figure P2.73

2.74 Find I; and V, in the circuit in Fig. P2.74.

6V CLD

W
L 2k
212k

Figure P2.74

2.75 Find V,, and V,, in the circuit in Fig. P2.75.

+ v, -
a “ b
WA WA
20 50
zovC_F)
<
103 L 4d 330
<
Ve 310
WA
c 20

Figure P2.75

2.76 Find I, in the network in Fig. P2.76.

VW
6 kQ)
12mA C) <§12 kQ 212k 212k
I{)
Figure P2.76
2.77 Determine /, in the circuit in Fig. P2.77.
6 kQ)
v’V\IA v’V\IA V%A
12 kQ) 4 kQ
2kQ
403 16k
12V I,
Figure P2.77
2.78 Find V, in the network in Fig. P2.78.
10Q
ANV
50 6Q
aAA MW
24v<j> 89§ Vv, 403
N NV
30 30
Figure P2.78
2.79 Find V,, in the circuit in Fig. P2.79.
3ov.  * v -
a ab b
@ ANV . ANV
30 4Q
> 150 100 > 60
903 2 2
ANV
20
Figure P2.79



2.80 Find V,, in the network in Fig. P2.80.

50 30 20
AN AN AN
> >
C)SA gen 360
20 30 40
A AN AN

Figure P2.80

2.81 Find I}, I,, and V| in the circuit in Fig. P2.81.

40

20
—\M———— A —

Figure P2.81

2.82 Determine V, in the network in Fig. P2.82.

18 mA C)

§3kﬂ

5kQ

1kQ

Figure P2.82

2.83 Calculate V,p in Fig. P2.83.

PROBLEMS
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2.84 Find I, in the network in Fig. P2.84 if all resistors are

6 Q.

3 3
6A<I> WA
<
2 :
I i
Figure P2.84
2.85 Find [, in the circuit in Fig. P2.85.
6Q 30
VWA VWA
< <
603 $30
6
%v(i) W
<
J 230
603 f
1
6Q 30 ¢
VWA VWA
Figure P2.85

2.86 Determine the power supplied by the 36-V source in the
circuit in Fig. P2.86.

B
//////T’j_—_—_:;:\\ A
Vas 40 40 20
> > >
260 240 260
A A\ AN AN
20 40 20

Figure P2.83

12kQ
VWA
54 mg $nk0
%v(i) VWA
g 18 kQ
3kQ
VWA
6 kQ)
Figure P2.86
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2.87 Find the power supplied by the current source in the net-
work in Fig. P2.87. All resistors are 12 ().

12Q

120 120 %129
CD 4A VWA
120
120 <3129 120
Figure P2.87

2.88 In the network in Fig. P2.88, V; = 12 V. Find V.

4kQ
VWA VWA VWA
2kQ Ty T 1kQ
+ < < <
VSC_D 6k9§ 4|<Q$> 3|<Q$>
Figure P2.88

2.89 In the circuit in Fig. P2.89, V, = 2 V. Find I.

VA VA VAN
120 20 80
< <
1095> ISCD 39% 4Q§
Figure P2.89

2.90 In the network in Fig. P2.90, V|, = —14 V. Find V.

1kQ 4 kQ 2kQ
VWA VWA VWA
+ v,
<
7k 3 S8k v
Figure P2.90

2.91 If Vg = 15V, find V, in Fig. P2.91.

AN
40

AN
40

40

AAA

Figure P2.91

m‘g

Figure P2.92

L Vi=sV

2.92 Find the value of I, in the network in Fig. P2.92.

4V

2.93 If V| = 5V in the circuit in Fig. P2.93, find /.

4kQ

vWA
~
-,

10 k)

Figure P2.93

Ve oy 3k
< <
A
3k9§ §12k9 2mA<

—AV—y
2k0

) 1 3

Figure P2.94

2.94 Given that V, = 4 V in the network in Fig. P2.94, find V.



2.95 Find the value of V; in the network in Fig. P2.95 such that
the power supplied by the current source is 0.

30 80
vl\/\IA v’\/\l‘
@:BV3AGD %CD
vl\/\IA v’\/\l‘
20 60
Figure P2.95

2.96 In the network in Fig. P2.96, V, = 6 V. Find I;.

Figure P2.96
2.97 Find the value of V| in the network in Fig. P2.97 such that
V,=0.
8V
20
/—_b VIIV\IA
+ —/
20
< <
v.320 349 203 ‘G<§>
Vl
Figure P2.97

2.98 Find the value of I, in the circuit in Fig. P2.98.

QCD 349

VWA
40

69%

v, =12V

O

40

v’\/\l‘

Figure P2.98
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2.99 If the power supplied by the 2-A current source is 40 W,
find Vs and the power absorbed by the 5-V source in the

network in Fig. P2.99.

2A

50 :

50
MV

5v<§> §59

ANV
10 Q

50

MN

D

Figure P2.99

2.100 The 40-V source in the circuit in Fig. P2.100 is absorbing
80 W of power. Find V..

3A
(D)
—/
200 50 100
ANV ANV ANV
603
> 4
5A
002 C)
v

@Dwv

Figure P2.100

2.101 Find the value of the current source /, in the network in

Fig. P2.101.

Figure P2.101
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2.102 Given /, = 2 mA in the network in Fig. P2.102, find V.

6 mA CD C_D A

‘gmz

1kﬂ<é

Figure P2.102

2.103 Find the value of V, in the network in Fig. P2.103, such
that the 5-A current source supplies 50 W.

V

X

20 :

VWA
4Q

5v<i> <gm

229 C)SA

Figure P2.103

2.104 Given I, = 2 mA in the circuit in Fig. P2.104, find I,.

(,vCi) 3»1kQ

<
éZkQ

D
N
IA

<

1k9§

6V
()
/

2

ka2

>

I

o

‘gn@

Figure P2.104

2.105 Given V, in the network in Fig. P2.105, find /,.

s CD’A 21k
()
VW I*
1kQ \—/ +
12V
6v<i> S2k0 §1k9 Vv, =4V

Figure P2.105

1Q

v’\/\l‘

40Q

2.106 Find the value of V, in the circuit in Fig. P2.106 such that
the power supplied by the 5-A source is 60 W.

VWA

20

VWA

CD 5A

Figure P2.106

nm‘g

2kQ

Figure P2.107

18 kO

2.107 Find the power absorbed by the network in Fig. P2.107.

2.108 Find the value of g in the network in Fig. P2.108 such

that the power supplied by the 3-A source is 20 W.

20

Figure P2.108

<l gl



2.109 Find the power supplied by the 24-V source in the circuit
in Fig. P2.109.

<
12kQ$>

12kQ<§

<$’12 kQ

Figure P2.109

2.110 Find [, in the circuit in Fig. P2.110.

202

>

%129

CJ_D 24V

W
120
80 3 %14 Q
ID
Figure P2.110

2.111

Find [, in the circuit in Fig. P2.111.

36V Ci)

Figure P2.

20 1,
VWA VWA
90 30
< <
40
§129 5»
120 50
VA VA
18Q
111

2.112 Determine the value of V, in the network in Fig. P2.112.

12 kQ

6k0 3

>

VWA

18kQ<$>

402

>

12V Ci)

zékﬂ

Figure P2.112
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2.113 If V, in the circuit in Fig. P2.113 is 24 V, find the value

of Ig.
<
4Q§ Ci 12V gzn
IS
2A
16V CJ_D $s0 S40 vV, =24V

Figure P2.113

2.114 Find the value of Vj in the network in Fig. P2.114.

VS
1kQ 1kQ
W ) Wy,
T ’
< <
zvx<j> 103 1 3 vy s 8V

Figure P2.114

2.115 Find the power supplied by the 6-mA source in the net-
work in Fig. P2.115.

4 kQ

oD

12V Cﬁ)

< <
3 312k
> >
12 k) <
WA 2 12kQ
<
S12k0
>
Figure P2.115
2.116 Find V, in the circuit in Fig. P2.116.
I
A% A
3kQ +
2000 I
<
S 5k0 v,
>

Figure P2.116
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2.117 Find V, in the network in Fig. P2.117.

I /\
VWA +—
2kQ y

1%

24V<i> ’ §4k9

Figure P2.117

2.118 Find [, in the network in Fig. P2.118.

8Q
ANV

2.121 Find V, in the circuit in Fig. P2.121.

6A CD

OIERY

29,3 20

v
VWA

Figure P2.121

6ov<i> 240 260 <T> 31,

Figure P2.118

2.119 A single-stage transistor amplifier is modeled as shown in

Fig. P2.119. Find the current in the load R;.
Rg=1kQ

Figure P2.119

2.120 Find [, in the circuit in Fig. P2.120.

%

4

20

w® [ On O

Figure P2.120

zno C‘) 45A

2.122 A typical transistor amplifier is shown in Fig. P2.122.
Find the amplifier gain G (i.e., the ratio of the output volt-

age to the input voltage).

100 0 4k0
—/WW Y
+
< <
VS=250mV<i_> 5|<Q§> 50003 <_T_> $3000 v,
5
, | 4xos,

Figure P2.122
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2.123 Find V, in the network in Fig. P2.123. 2.125 Find I}, I,, and 5 in the circuit in Fig. P2.125.

L b

41 <J_r> 80 CD 2A CJ_D 24V

10
60 I 3Q

ANV

2]

x

()

3Q 60 20

Figure P2.125

I— M —e—AV—¢ <
IS+
AN
\/

Figure P2.123 . . -
2.126 Find , in the network in Fig. P2.126.

2.124 Find V, in the network in Fig. P2.124.
V()
- <50
v, <
1Q * 20
. 53 > 60 5 CD 5A <l> 3v,
2V, 6A < 4v, +
20 O&ES | ‘
20 9 S20 y w0 v,
= Figure P2.126

Figure P2.124

2.127 Find the power absorbed by the 12-k{) resistor on the
right side of the network in Fig. P2.127.

+
< <
4k 3 S12k0
3 212k0
5 mA CD 202 5500 <J - v, 3
v, 23k0
Figure P2.127
2.128 Find the power absorbed by the 12-k{} resistor in the net-
work in Fig. P2.128.
+

§4kﬂ

6 mACD 40 3 31, <l> v, Snke

6ka 3 30 2

\4
\4

o |

Figure P2.128
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2.129 Find the value of k in the network in Fig. P2.129 such
that the power supplied by the 6-A source is 108 W.

v’\/\l‘

40

6A C) %69 <l>k10
602

%120

Figure P2.129

2.130 If the power absorbed by the 10-V source in Fig. P2.130
is 40 W, calculate /.

60 40 50
M AAA +"\N\/—

0.6V, <i> z100 C) L1503, Cj)mv

Figure P2.130

2.131 If the power supplied by the 2-A current source in

Fig. P2.131 is 50 W, calculate k.

50 1, 20

40

MV

sovCD 2AC‘> §5Q <l K,

MWV

ém

<

Figure P2.131

TYPICAL PROBLEMS FOUND ON THE FE EXAM

2FE-1 What is the power generated by the source in the network

in Fig. 2PFE-1?

a. 2.8W c. 3.6 W
b. 1.2W d. 24W
5kQ
v’\/\l‘

6 kQ

120V Cj)

Figure 2PFE-1

2FE-2 Find V,, in the circuit in Fig. 2PFE-2.

a. -5V c. 15V
b. 10V d. —10V
a
100
50
4A
()
/
150
100
b

Figure 2PFE-2

Vab



2FE-3

2FE-4

2FE-5

If R,, = 10.8 () in the circuit in Fig. 2PFE-3, what is R,?

a. 12Q c. 83Q)
h. 20 Q) d. 18Q
C ANV
40
R,y —> 389, §R2
C ANV
20

Figure 2PFE-3

Find the equivalent resistance of the circuit in Fig. 2PFE-4
at the terminals A-B.

a. 4kQ c. 8kQ
b. 12kQ d. 20kQ
6 kQ 12kQ
12 kQ)
4 kQ
C VMA

B
Figure 2PFE-4

The 100-V source is absorbing 50 W of power in the net-
work in Fig. 2PFE-5. What is R?

a. 17.27Q c. 19250
h. 9.42 Q d. 15120
100 100
R
SACD Ci 100V
200V

Figure 2PFE-5
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2FE-6 Find the power supplied by the 40-V source in the circuit

in Fig. 2PFE-6.
a. 120W c. 212W
h. 232W d. 184W

500

2on§4ov<j> 259§ 1oon§ 3AG>

100V

Figure 2PFE-6

2FE-7 What is the current /, in the circuit in Fig. 2PFE-7?

a. 0.84 mA c. 2.75mA
b. —1.25mA d. —0.22 mA
VWA VWA
3kQ 4 kQ
C:) 12V %12 kQ
k23
6 kO % 3 3kQ % 6 kQ
IO

Figure 2PFE-7

2FE-8 Find the voltage V, in the network in Fig. 2PFE-8.

a. 24v c. 36V
b. 10V d. 12V
1kQ 2kQ
Vw‘ Vw‘
+
< A <
3k 3 24mAC> 6k,
Vw‘
6 kO
Vw‘
12kQ

Figure 2PFE-8
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2FE-9 What is the voltage V, in the circuit in Fig. 2PFE-9? 2FE-10 Find the current /, in Fig. 2PFE-10.
a. 2v c.5V a. 12A c. 32A
h. 8V d. 12V b. 5/3A d. 8/3A
AN'
10 +

ZAGD 20

ANV

4A<D 3Q§V0 12v<i>

Figure 2PFE-9

Figure 2PFE-10



ChapterThree

THE LEARNING GOALS FOR THIS
CHAPTER ARE THAT STUDENTS
SHOULD BE ABLE TO:

B Calculate the branch currents and node voltages in
circuits containing multiple nodes using KCL and
Ohm’s law in nodal analysis.

B Calculate the mesh currents and voltage drops and
rises in circuits containing multiple loops using KVL
and Ohm’s law in loop analysis.

B Identify the most appropriate analysis technique that

should be utilized to solve a particular problem.

EXPERIMENTS THAT HELP STUDENTS DEVELOP AN UNDERSTANDING OF LOOP AND NODAL
TECHNIQUES FOR CIRCUIT ANALYSIS ARE:

B Kirchhoff's Laws: Prove Kirchhoff's laws experimentally and the conservation of power from voltage and current measurements
in simple circuits.

B Mesh Current and Node Voltage Analyses: Build and analyze a circuit using mesh current or node voltage analysis and exam-
ine the effect of multiple sources on a circuit parameter by accumulating the results of the individual sources using superpo-
sition.

B Wheatstone Bridge: Predict the temperature using a Wheatstone bridge with a thermistor as the element in one leg of the
bridge.

89
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(s)

Nodal
Analysis

NODAL AND LOOP ANALYSIS TECHNIQUES

In a nodal analysis, the variables in the circuit are selected to be the node voltages. The node
voltages are defined with respect to a common point in the circuit. One node is selected as the
reference node, and all other node voltages are defined with respect to that node. Quite often,
this node is the one to which the largest number of branches are connected. It is commonly
called ground because it is said to be at ground-zero potential, and it sometimes represents
the chassis or ground line in a practical circuit.

We will select our variables as being positive with respect to the reference node. If one
or more of the node voltages are actually negative with respect to the reference node, the
analysis will indicate it.

In order to understand the value of knowing all the node voltages in a network, we consider
once again the network in Fig. 2.32, which is redrawn in Fig. 3.1. The voltages, Vs, V,, V,,
and V,, are all measured with respect to the bottom node, which is selected as the reference and
labeled with the ground symbol L. Therefore, the voltage at node 1 is Vg = 12 V with respect
to the reference node 5, the voltage at node 2 is V, = 3 V with respect to the reference node 5,
and so on. Now note carefully that once these node voltages are known, we can immediately
calculate any branch current or the power supplied or absorbed by any element, since we know
the voltage across every element in the network. For example, the voltage V, across the leftmost
9-k(} resistor is the difference in potential between the two ends of the resistor; that is,

Vi=Vs—=V,
=12-3
=9V

This equation is really nothing more than an application of KVL around the leftmost loop; that is,
-Vi+V,+V,=0
In a similar manner, we find that
Vi=V,=V,
and

Vi=V, -V

c

Then the currents in the resistors are

:ﬂ—VS_Va

9k 9k
—&_Va_vb
3k 3k
_Vs_V,—-V

(o)

L=9c = 7ok

In addition,

since the reference node 5 is at zero potential.

Figure 3.1 3

igure V=3V V=5V Ve=2v
Circuit with known node Vi v i _ @ V3 ® Vs
voltages. @ VWA M  MW—— @
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Vi

=
VWA
0
=~

=
¥
WA
u"N
T iH—
=
5

(a)

Figure 3.2
Circuit used to illustrate Ohm’s law in a multiple-node network.

Thus, as a general rule, if we know the node voltages in this circuit, we can calculate the
current through any resistive element using Ohm’s law; that is

1= R

31

as illustrated in Fig. 3.2a. Note carefully that both voltages V,, and V, are both measured with
respect to the same point, i.e., ground. In a nodal analysis, this concept is central to the manner in
which we write the equations necessary to determine all the node voltages. Consider for example
the network in Fig. 3.2b, where the voltages labeled V,, V,, Vs, and V, represent the voltages at
those nodes with respect to the ground node. Then we can write the following KVL equations:

_V2 + IlRl + Vl =0

“Vi+ LR, +V,=0

_V3 + I3R3 + V2 =0

which yields equations for the currents as follows:

RUESD
1
R,
I, = (Vl — V4)
2
R,
13 — (V3 — VZ)
Ry

In addition, the KVL equation
_Vl + VA + V3 =0
indicates that V; — V; = V,. Finally, Ohm’s law yields I5 = V,/Rs.

Now that we have demonstrated the value of knowing all the node voltages in a network,
let us determine the manner in which to calculate them. In a nodal analysis, we employ KCL
equations in such a way that the variables contained in these equations are the unknown
node voltages of the network. As we have indicated, one of the nodes in an N-node circuit is
selected as the reference node, and the voltages at all the remaining N — 1 nonreference nodes
are measured with respect to this reference node. Using network topology, it can be shown
that exactly N — 1 linearly independent KCL equations are required to determine the N — 1
unknown node voltages. Therefore, theoretically once one of the nodes in an N-node circuit
has been selected as the reference node, our task is reduced to identifying the remaining N — 1
nonreference nodes and writing one KCL equation at each of them.

In a multiple-node circuit, this process results in a set of N — 1 linearly independent
simultaneous equations in which the variables are the N — 1 unknown node voltages. To

o1
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Figure 3.3 vV, =4V V,=-2V
. . ; WW
An illustration of node ©) R, @
voltages. |
R, $>R3
10

help solidify this idea, consider once again Example 2.5. Note that in this circuit, only four
(i.e., any four) of the five KCL equations, one of which is written for each node in this five-
node network, are linearly independent. Furthermore, many of the branch currents in this
example (those not contained in a source) can be written in terms of the node voltages as
illustrated in Fig. 3.2a and expressed in Eq. (3.1). It is in this manner, as we will illustrate in
the sections that follow, that the KCL equations contain the unknown node voltages.

It is instructive to treat nodal analysis by examining several different types of circuits and
illustrating the salient features of each. We begin with the simplest case. However, as a prelude
to our discussion of the details of nodal analysis, experience indicates that it is worthwhile to
digress for a moment to ensure that the concept of node voltage is clearly understood.

At the outset it is important to specify a reference. For example, to state that the voltage
at node A is 12 V means nothing unless we provide the reference point; that is, the voltage
at node A is 12 V with respect to what? The circuit in Fig. 3.3 illustrates a portion of a net-
work containing three nodes, one of which is the reference node.

The voltage V; = 4 V is the voltage at node 1 with respect to the reference node 3.
Similarly, the voltage V, = —2 V is the voltage at node 2 with respect to node 3. In addition,
however, the voltage at node 1 with respect to node 2 is +6 V, and the voltage at node 2 with
respect to node 1 is —6 V. Furthermore, since the current will flow from the node of higher
potential to the node of lower potential, the current in R, is from top to bottom, the current in
R, is from left to right, and the current in R5 is from bottom to top.

These concepts have important ramifications in our daily lives. If a man were hanging in
midair with one hand on one line and one hand on another and the dc line voltage of each
line was exactly the same, the voltage across his heart would be zero and he would be safe.
If, however, he let go of one line and let his feet touch the ground, the dc line voltage would
then exist from his hand to his foot with his heart in the middle. He would probably be dead
the instant his foot hit the ground.

In the town where we live, a young man tried to retrieve his parakeet that had escaped its
cage and was outside sitting on a power line. He stood on a metal ladder and with a metal
pole reached for the parakeet; when the metal pole touched the power line, the man was killed
instantly. Electric power is vital to our standard of living, but it is also very dangerous. The
material in this book does not qualify you to handle it safely. Therefore, always be extremely
careful around electric circuits.

Now as we begin our discussion of nodal analysis, our approach will be to begin with sim-
ple cases and proceed in a systematic manner to those that are more challenging. Numerous
examples will be the vehicle used to demonstrate each facet of this approach. Finally, at the
end of this section, we will outline a strategy for attacking any circuit using nodal analysis.

CIRCUITSCONTAININGONLYINDEPENDENTCURRENTSOURCES Consider
the network shown in Fig. 3.4. Note that this network contains three nodes, and thus we
know that exactly N — 1 = 3 — 1 = 2 linearly independent KCL equations will be required

Figure 3.4 Yy v
A three-node circuit. @% ) ,/\1:\2/ @ i
3
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to determine the N — 1 = 2 unknown node voltages. First, we select the bottom node as the
reference node, and then the voltage at the two remaining nodes labeled v, and v, will be
measured with respect to this node.

The branch currents are assumed to flow in the directions indicated in the figures. If one
or more of the branch currents are actually flowing in a direction opposite to that assumed,
the analysis will simply produce a branch current that is negative.

Applying KCL at node 1 yields

—iytiti,=0
Using Ohm’s law (i = Gv) and noting that the reference node is at zero potential, we obtain
—iy T Gi(v = 0) + Gy —vy) =0
or
(G + Gy — Gyvy, = iy
KCL at node 2 yields
—ihtigtiz=0
or
—Gy(vy — ) g+ Gi(v, —0)=0
which can be expressed as
—Gy T (G T Gy)v, = —ip
Therefore, the two equations for the two unknown node voltages v, and v, are
G+ Gy — Gy =y
—Gyu + (G, + Gy)v, = —ip

3.2

Note that the analysis has produced two simultaneous equations in the unknowns v, and v,.
They can be solved using any convenient technique, and modern calculators and personal
computers are very efficient tools for this application.

In what follows, we will demonstrate three techniques for solving linearly independent
simultaneous equations: Gaussian elimination, matrix analysis, and the MATLAB mathemati-
cal software package. A brief refresher that illustrates the use of both Gaussian elimination
and matrix analysis in the solution of these equations is provided in the Problem-Solving
Companion for this text. Use of the MATLAB software is straightforward, and we will dem-
onstrate its use as we encounter the application.

The KCL equations at nodes 1 and 2 produced two linearly independent simultaneous
equations:

—ipti+i,=0

_i2 + iB + i3 =0
The KCL equation for the third node (reference) is

+iy— i, —ig—i3=0

Note that if we add the first two equations, we obtain the third. Furthermore, any two of the
equations can be used to derive the remaining equation. Therefore, in this N = 3 node cir-
cuit, only N — 1 = 2 of the equations are linearly independent and required to determine the
N — 1 = 2 unknown node voltages.

Note that a nodal analysis employs KCL in conjunction with Ohm’s law. Once the direc-
tion of the branch currents has been assumed, then Ohm’s law, as illustrated by Fig. 3.2 and
expressed by Eq. (3.1), is used to express the branch currents in terms of the unknown node
voltages. We can assume the currents to be in any direction. However, once we assume a particular

direction, we must be very careful to write the currents correctly in terms of the node voltages
using Ohm’s law.
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EXAMPLE 3 . 1 Suppose that the network in Fig. 3.4 has the following parameters: [, = 1 mA, R, = 12 k),
/N R, = 6 kQ, I; = 4 mA, and R; = 6 k(). Let us determine all node voltages and branch

currents.

SOLUTION  For purposes of illustration we will solve this problem using Gaussian elimination, matrix
analysis, and MATLAB. Using the parameter values, Eq. (3.2) becomes

1 1 1 .
V‘{ 12k 6k} Vz[ 6k} 110
1 1 1} L,
V| —|+V| —+—|=-4X10
1{6k} 2L’)k 6k

where we employ capital letters because the voltages are constant. The equations can be

written as
Vi_Va_ -3
T e
Vl V2 =3
Vi V_ .
6k+3k 4 X 10

Using Gaussian elimination, we solve the first equation for V| in terms of V,:

V] = Vz(g) + 4

This value is then substituted into the second equation to yield

_—1(gvz+4)+ﬁ=—4><10*3

6k \3 3k
or
V,=—-15V
This value for V, is now substituted back into the equation for V; in terms of V,, which yields
V= % V, +4
=—-6V

The circuit equations can also be solved using matrix analysis. The general form of the matrix
equation is

GV =1
where in this case
11
| o Tk | v _{ 1><10*3]
G = 1 i,V—{Vz],andl— _4 % 1073
6k 3k
The solution to the matrix equation is
V=G
and therefore,
1 -1
{Vl} 4k 6k { 1 X 10*3}
) | —4x1073

6k 3k
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To calculate the inverse of G, we need the adjoint and the determinant. The adjoint is

AdjG =

and the determinant is

61 = (5e) e

1

)- (&) &)

95

~I8K2
Therefore,
11
[Vl}: . 3k 6k { 1 X 10*3}
Vs 1 1 |[-4x1073
ok 4k
14
3K 6k
= 18k?
i NI
6k> Kk

-| ]
—15
In the MATLAB solution, we simplify the form of the equations by multiplying both equa-

tions by 12k, yielding

3V, -2V, = 12
—2V, + 4V, = —48

2 -

Then the data entries and solution using MATLAB are as follows:

In matrix form, the equation is

>> 6 = [3 -2, -2 4]
G =
3 =2
-2 4
>> I = [12; -481
12
-48
>> V = inv(G)*I
V =
-6.0000
-15.0000

Knowing the node voltages, we can determine all the currents using Ohm’s law:

Vi—V, _—6-(-15 _3

6k ok 5 MA
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and

_V_-15_ 5
L=E T T

Fig. 3.5 illustrates the results of all the calculations. Note that KCL is satisfied at every node.

Figure 3.5 V,=-6V V,=-15V
. . . a Vm‘ a
Circuit used in Example 3.1. %mA 6 kQ 5 ma
1mA C‘) 12k0 4mA 36ko
%mA

Let us now examine the circuit in Fig. 3.6. The current directions are assumed as shown
in the figure.

We note that this network has four nodes. The node at the bottom of the circuit is selected
as the reference node and labeled with the ground symbol. Since N = 4, N — 1 = 3 linearly
independent KCL equations will be required to determine the three unknown nonreference

node voltages labeled v;, v,, and v;.
At node 1, KCL yields

i\~ iy ti,—i3=0

or

At node 2, KCL yields

or
B R PR VS el
R, R, R
1 1 1 1 1
Y — |t —F—]—1,—=0
"R, ”2(R2 R, Rs) " Rs
Figure 3.6 Ry i

A four-node circuit.
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At node 3, the equation is
iy+is+iz=0

or

L | () .

+B %4, =0

R, R; '

1 1 1 1 .

v ——v—tn|—t—|=-
YRy R, ”3(R3 Rs) &

Grouping the node equations together, we obtain

1 1 1 1 1 .
”‘(R1 R, Rs) "R, R,
1 1 1 1 1
—v -ttt | vy =0 33
"R, ”Z(Rz R, Rs) "R,
1 1 1 1 .
_”1R_3_”2R_5+“3(R_3+R_5):_*

Note that our analysis has produced three simultaneous equations in the three unknown node
voltages v;, v,, and v;. The equations can also be written in matrix form as

1,1, 1 1 1
R R, R R, R oy .
1 1 1 1 1
- — == = —
R, R R R R ||Z7]° 34
1 I S T I e S

At this point it is important that we note the symmetrical form of the equations that
describe the two previous networks. Egs. (3.2) and (3.3) exhibit the same type of sym-
metrical form. The G matrix for each network is a symmetrical matrix. This symmetry is
not accidental. The node equations for networks containing only resistors and independent
current sources can always be written in this symmetrical form. We can take advantage of
this fact and learn to write the equations by inspection. Note in the first equation of (3.2)
that the coefficient of v, is the sum of all the conductances connected to node 1 and the
coefficient of v, is the negative of the conductances connected between node 1 and node 2.
The right-hand side of the equation is the sum of the currents entering node 1 through
current sources. This equation is KCL at node 1. In the second equation in (3.2), the coef-
ficient of v, is the sum of all the conductances connected to node 2, the coefficient of v, is
the negative of the conductance connected between node 2 and node 1, and the right-hand
side of the equation is the sum of the currents entering node 2 through current sources. This
equation is KCL at node 2. Similarly, in the first equation in (3.3), the coefficient of v, is
the sum of the conductances connected to node 1, the coefficient of v, is the negative of
the conductance connected between node 1 and node 2, the coefficient of v; is the negative
of the conductance connected between node 1 and node 3, and the right-hand side of the
equation is the sum of the currents entering node 1 through current sources. The other two
equations in (3.3) are obtained in a similar manner.

In general, if KCL is applied to node j with node voltage v, the coefficient of v; is the sum
of all the conductances connected to node j and the coefficients of the other node voltages
(e.g., vy, v ) are the negative of the sum of the conductances connected directly between
these nodes and node j. The right-hand side of the equation is equal to the sum of the cur-
rents entering the node via current sources. Therefore, the left-hand side of the equation
represents the sum of the currents leaving node j and the right-hand side of the equation
represents the currents entering node j.



o8

CHAPTER 3 ¢ NODAL AND LOOP ANALYSIS TECHNIQUES

EXAMPLE 3.2
AN

SOLUTION

Let us apply what we have just learned to write the equations for the network in Fig. 3.7 by
inspection. Then, given the following parameters, we will determine the node voltages using
MATLAB: R, = R, =2kQ, Ry = R, =4k, Rs = 1k(), iy = 4 mA, and iz = 2 mA.

Figure 3.7 R,
Circuit used in Example 3.2. e
D) v
B — 7 VWA U3
—/ R,
Rz% Rs Cl) %Rs
iB
L

The equations are

1 1 1 .
2 —u0) — v )= —
Ul(Rl Rz) 1,(0) 'Us(R) 7
1
1

1
—mm+qi+1yw{4=a—%
R, R) \&,
1 1 1 1
—afl e = | e = L
“QJ %&)”u1R4RJ

which can also be written directly in matrix form as

0

N _1
R, R, R, :
vy Ty
o L4+l - L v|=|i—i
R, R, R, 2T
1 1 R 0
—— N — g ==
Rl R4 Rl R4 RS.

Both the equations and the G matrix exhibit the symmetry that will always be present in
circuits that contain only resistors and current sources.
If the component values are now used, the matrix equation becomes

LU 1
2k 2k
1 | 21k Y —0.004
0 YT I T ~IK V=] 0.002
U3 0
_1 0 S SIS S
2k 4k 2k 4k 1k
Multiplying the matrix equation by 4k yields the equation
4 0 —2|[u —16
0 2 —-1||»n|= 8
-2 -1 71l 0
The MATLAB solution is then
> 6 =[40-2;, 02 -1; -2 -1 71
G =
4 0o -2
0 2 -1

-2 =1 7
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>> I = [-16;8;01]

-16
8
0
>> V = inv(G)*I
vV =
-4.3636
3.6364
-0.7273

LEARNING ASSESSMENTS

E3.1 Write the node equations for the circuit in Fig. E3.1. ANSWER:
1 1
v V. vy oy = 3
1 A 2 4kV1 12kv3 4 X 10°,
12kQ -1 v -3
) TEE‘G-F4kVZ— 2 X 107",
4mAC> 6 kO S6ka C)ZmA
Figure E3.1 J,-
E3.2 Find all the node voltages in the network in Fig. E3.2 using MATLAB. ANSWER:
1kQ V), = 54286V,
VWA V, = 2.000V,
Vs = 3.1429 V.
2k v, 4kQ
Vi VWA ; VWA Vs
4mAC> %1“1 G)ZmA
Figure E3.2 J,-
E3.3 Use nodal analysis to find V, in Fig. E3.3. ANSWER:
V,=279V.
2mA
-
/
6 kQ 2 kQ
v’\/\l‘ v’\/\l‘

8mA<T> §3k9 %ekn §1k9 v,

Figure E3.3
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CIRCUITS CONTAINING DEPENDENT CURRENT SOURCES The presence of
a dependent source may destroy the symmetrical form of the nodal equations that define the
circuit. Consider the circuit shown in Fig. 3.8, which contains a current-controlled current
source. The KCL equations for the nonreference nodes are

LU, Y Ty
+ L+ =2=0
Bi, R, R
and
EL:JQ.+iD_-%::O
2
where i, = v,/R;. Simplifying the equations, we obtain
(G, + Gy — (G, =BGy, =0
=G T (Gt Gy)v, =y
or in matrix form
(G1 + Gy (=G, — BGy) {Ul] _ {0}
_G2 (G2 + G3) U 17
Note that the presence of the dependent source has destroyed the symmetrical nature of the
node equations.

Figure 3.8 vy v,
Lo VWA :
Circuit with a dependent R,
source. )
O TN TR OY
Bi, .
l{)
h

EXAMPLE 3.3

AN

SOLUTION

Let us determine the node voltages for the network in Fig. 3.8, given the following parameters:

B=2 R, = 6 k() iy = 2mA
R, = 12kQ R; =3k
Using these values with the equations for the network yields
1 1.
EVI 4+ 2kV2 =0
1

DI 3
Vit =2%10

Multiplying the equations by 12k yields the equation
[ 3 6} Vi _ { 0]
-2 61|V, 24
The MATLAB solution is then

>> 6 = [3 6; -2 61
G

3 6
-2 6

>> I = [0;24]

0
24
>> V = inv(G)*I
V =
-4.8000

2.4000
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We can check these answers by determining the branch currents in the network and then
using that information to test KCL at the nodes. For example, the current from top to bottom
through Rj is

_V,_12/5 _ 4

° Ry 3k 5k
Similarly, the current from right to left through R, is

LoV Vi 12/5-(=24/5) _ 6
2 R, 6k 5k

All the results are shown in Fig. 3.9. Note that KCL is satisfied at every node.

v __24V IzisékA V.= 12, Figure 3.9
= 2T 3 - i
: 5 A . 5 Circuit used in

6 kQ Example 3.3.

_8 b 10
2,= SA <L> S12ko 3k0 CD oA
-2 _4
I = A I, = g A
L

Let us determine the set of linearly independent equations that when solved will yield the
node voltages in the network in Fig. 3.10. Then, given the following component values,
we will compute the node voltages using MATLAB: R, = 1 kQ), R, = R; = 2k, R, = 4
kQ, i, = 2mA, i = 4 mA, and o = 0.002.

/\iA Figure 3.10
N, Circuit containing
a voltage-controlled
u| + U — v, current source.
V) VWA A%
RI R2
< < X y
% SR TIEE S )
<

Applying KCL at each of the nonreference nodes yields the equations
Gyv +Gi(v —v) — i, =0
iy + Gy, —v) +av + Gy(v, —13) =0
Gy(vs — 1) + Gyus —ip =0
where v, = v, — v;. Simplifying these equations, we obtain
(G + Gy —Gv, = iy
_G]'U] a4 (Gl + o + Gz)vz - (OL aF GZ)U3 = _iA
G, (G + Gy = i

EXAMPLE 3.4
AA
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Given the component values, the equations become

(11 1
" 12k 1 2k L2, 1\ 0'002]
—— —+t-+t—= —|=+—=|||¥|=|—0.002
k k 2k ( )
k 1 1k 21k v] | 0.004
O R _ —
L 2k 2k+4k J
Multiplying the equations by 4k yields the equation
6 —4 R4 8
-4 14 —-10(|V2|=]|-8
0 —2 31|V, 16
The MATLAB solution is then
>> 6 = [6 -4 0;-4 14 -10;0 -2 31
G =
6 -4 0
-4 14 -10
0 -2 3
>> 1 = [8,;,-8;161
=
8
-8
16
>> V = inv(G)*I
V =
8.5714
10.8571
12.5714
LEARNING ASSESSMENTS
E3.4 Find the node voltages in the circuit in Fig. E3.4. ANSWER:
Vl Vz V] = 16V,
VWA—t Vo= -8V
10 kQ)
< 210 <
10ka S C‘) 210kQ
1, 4 mA
Figure E3.4 J,-
E3.5 Find the voltage V,, in the network in Fig. E3.5. ANSWER:
vV, /\ V,=4V.
A4 .
VX < <
2mAC‘> 3kQ 6000 212k S 12k v,

Figure E3.5
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E3.6 Find V, in Fig. E3.6 using nodal analysis.

2mA
&
—/
6 kO 2k0 1,
VWA vI\/\IA
+
< < <
2, <T> <3k0 6k Sk v,
> >
Figure E3.6 o
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ANSWER:
V,=0952V.

CIRCUITS CONTAINING INDEPENDENT VOLTAGE SOURCES As is our prac-
tice, in our discussion of this topic we will proceed from the simplest case to more compli-
cated cases. The simplest case is that in which an independent voltage source is connected to
the reference node. The following example illustrates this case.

Consider the circuit shown in Fig. 3.11a. Let us determine all node voltages and branch currents.

This network has three nonreference nodes with labeled node voltages V;, V,, and V;. Based
on our previous discussions, we would assume that in order to find all the node voltages
we would need to write a KCL equation at each of the nonreference nodes. The resulting
three linearly independent simultaneous equations would produce the unknown node volt-
ages. However, note that V, and V; are known quantities because an independent voltage
source is connected directly between the reference node and each of these nodes. Therefore,
V, = 12V and V; = —6 V. Furthermore, note that the current through the 9-k{) resistor is
[12 — (—=6)]/9k = 2 mA from left to right. We do not know V, or the current in the remain-
ing resistors. However, since only one node voltage is unknown, a single-node equation will
produce it. Applying KCL to this center node yields

V2_V1 V2_0 VZ_V3_ V2_12 ﬁ Vz_(_6)_
2k TTek 1k 0 O ok ek Tk 0
from which we obtain
_ 3
V=3

Once all the node voltages are known, Ohm’s law can be used to find the branch currents
shown in Fig. 3.11b. The diagram illustrates that KCL is satisfied at every node.

Note that the presence of the voltage sources in this example has simplified the analysis,
since two of the three linear independent equations are V; = 12V and V; = —6 V. We will
find that as a general rule, whenever voltage sources are present between nodes, the node
voltage equations that describe the network will be simpler.

2
9kQ A 9k
VW VWA
7 5
12k V,  12kQ ah @ A
Vl A% 7 A% V3 @ A% 7 VWA
12 kQ 12 kQ
12VCJ_F> 6 kO C:st 12v<f> 6 kQ GL 6V
23 1 21
= e ah

1|
S

EXAMPLE 3.5
AA

SOLUTION

RN
HINT
tim€ an independent

voltage source is connected
between the reference node and a
nonreference node, the nonrefer-
ence node voltage is known.

Figure 3.11

Circuit used in Example 3.5.




104

CHAPTER 3 ¢ NODAL AND LOOP ANALYSIS TECHNIQUES

LEARNING ASSESSMENTS

6V CE)

Figure E3.7

E3.8 Find V, in Fig. E3.8 using nodal analysis.

oD

E3.7 Use nodal analysis to find the current /, in the network in Fig. E3.7. ANSWER
_3
v, I, == mA.
W—— WA 4
6 kQ 6 kQ
3k0 Cf 3V
10
-
ANSWER:
2mA
V,=3.89V.
-
_/
6kQ 2kQ
v’\/\l‘ vI\/\IA
+
6 kQ)
< 3k0 S,
12V

Figure E3.8

Next let us consider the case in which an independent voltage source is connected between
two nonreference nodes.

EXAMPLE 3.6

AN

SOLUTION

Suppose we wish to find the currents in the two resistors in the circuit of Fig. 3.12a.

If we try to attack this problem in a brute-force manner, we immediately encounter a problem.
Thus far, branch currents were either known source values or could be expressed as the branch
voltage divided by the branch resistance. However, the branch current through the 6-V source
is certainly not known and cannot be directly expressed using Ohm’s law. We can, of course,
give this current a name and write the KCL equations at the two nonreference nodes in terms
of this current. However, this approach is no panacea because this technique will result in
two linearly independent simultaneous equations in terms of three unknowns—that is, the two
node voltages and the current in the voltage source.

To solve this dilemma, we recall that N — 1 linearly independent equations are required
to determine the N — 1 nonreference node voltages in an N-node circuit. Since our network
has three nodes, we need two linearly independent equations. Now note that if somehow one
of the node voltages is known, we immediately know the other; that is, if V; is known, then
V, =V, — 6.1f V, is known, then V;, = V, + 6. Therefore, the difference in potential between
the two nodes is constrained by the voltage source and, hence,

VI_V2=6

This constraint equation is one of the two linearly independent equations needed to determine
the node voltages.

Next consider the network in Fig. 3.12b, in which the 6-V source is completely enclosed
within the dashed surface. The constraint equation governs this dashed portion of the net-
work. The remaining equation is obtained by applying KCL to this dashed surface, which is
commonly called a supernode. Recall that in Chapter 2 we demonstrated that KCL must hold
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for a surface, and this technique eliminates the problem of dealing with a current through a
voltage source. KCL for the supernode is
s .Y -3 _
6 X 10 +6k+12k+4><10 =0
Solving these equations yields V;, = 10 V and V, = 4 V and, hence, I; = 5/3 mA and I, =
1/3 mA. A quick check indicates that KCL is satisfied at every node.

Note that applying KCL at the reference node yields the same equation as shown above.
The student might think that the application of KCL at the reference node saves one from hav-
ing to deal with supernodes. Recall that we do not apply KCL at any node—even the reference
node—that contains an independent voltage source. This idea can be illustrated with the circuit
in the next example.

4 mA
6 mA C) 12 kQ)

6 mA A I,

or

I M—¢ =
)
_/
TR
_/

///
M
o
~
=y
o
<
\

\
SH
=
(=)

(a) ()
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Figure 3.12

Circuits used in
Example 3.6.

Let us determine the current /, in the network in Fig. 3.13a.

Examining the network, we note that node voltages V, and V, are known and the node volt-
ages V| and V; are constrained by the equation

VI_V3=12

The network is redrawn in Fig. 3.13b.

v ’ 0
1 // Vi+ 12 \\

<
éZkQ

\
n \
f |
< ¥ < < : n :
2kﬂ§ Cf) 12V gzkn 2k9§ l\ C_DIZV;
1

/

3 Vs

1kQ ~_| .~

O mQ

—~ WA
1kQ

C“_D 12v

Since we want to find the current /,, V, (in the supernode containing V, and V;) is written
as V; + 12. The KCL equation at the supernode is then

Vit 12-(=6) Vit 1212 V;=(=6)  V,=12 Vi _

2k 2k 1k 1k 2k 0

EXAMPLE 3.7

AUYAN

SOLUTION

Figure 3.13
Example circuit with

supernodes.
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Solving the equation for V; yields

6
Vi=—-—2-V
T
1, can then be computed immediately as
_6
__7__3
1, = 7 mA
LEARNING ASSESSMENTS
E3.9 Use nodal analysis to find 7, in the network in Fig. E3.9. ANSWER:
12V I, = 3.8 mA.
v V. v v,
LMy @ o
2 k) 2kQ
6V<i—> 1kQ <§>2kQ C_T_ 4V
10
Figure E3.9 Jr'
E3.10 Find V,, in Fig. E3.10 using nodal analysis. ANSWER:
2 mA V,=5.6W.
S
W gy
—+ WA
—/ +
8mA<D <30 Seko St Y,
Figure E3.10 o

CIRCUITS CONTAINING DEPENDENT VOLTAGE SOURCES As the following
examples will indicate, networks containing dependent (controlled) sources are treated in the
same manner as described earlier.

EXAMPLE 3.8
AN

SOLUTION

We wish to find 7, in the network in Fig. 3.14.

Since the dependent voltage source is connected between the node labeled V, and the
reference node,

KCL at the node labeled V, is
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where

_»
I)‘_lk

Solving these equations yields V, = 8 V and V; = 16 V. Therefore,

Vi—=V.
I = 1 2
? 2k

=4 mA

2kQ Figure 3.14
vi| I v, I Circuits used in Example 3.8.

2klx<i'> 3210 <>4mA Sk
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Let us find the current I, in the network in Fig. 3.15.

This circuit contains both an independent voltage source and a voltage-controlled voltage
source. Note that V3 = 6V, V, = V,, and a supernode exists between the nodes labeled V, and V..
Applying KCL to the supernode, we obtain

VI_V3+L+ﬁ+V2_V3:

6k 12k 6k 12k 0
where the constraint equation for the supernode is
V] - V2 = 2Vx
The final equation is
V3 =6
Solving these equations, we find that
9
Vi==V
2
and, hence,
W _3
=Tk ~gmA
6 kQ Figure 3.15
VWA

Circuit used in Example 3.9.

EXAMPLE 3.9

AUYAN

SOLUTION
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Finally, let us consider two additional circuits that, for purposes of comparison, we will
examine using more than one method.

EXAMPLE 3.10

AN

Let us find V, in the network in Fig. 3.16a. Note that the circuit contains two voltage sources,
one of which is a controlled source, and two independent current sources. The circuit is redrawn
in Fig. 3.16b in order to label the nodes and identify the supernode surrounding the controlled
source. Because of the presence of the independent voltage source, the voltage at node 4 is
known to be 4 V. We will use this knowledge in writing the node equations for the network.

Since the network has five nodes, four linear independent equations are sufficient to deter-
mine all the node voltages. Within the supernode, the defining equation is

VI_VZZZVx

where
and thus

Furthermore, we know that one additional equation is
V4 =4

Thus, given these two equations, only two more equations are needed in order to solve for the
unknown node voltages. These additional equations result from applying KCL at the super-
node and at the node labeled V;. The equations are

2.V, Vo=V 3V, Vi 3V, —4

ZmAC

<i>2Vx 1o Sy, S1ko <J_r> Y, 31k S1k0

PR RET Ik T
V3—3Vx+ Vi-V,._2
1k 1k k
Combining the equations yields the two equations
8V, —2V;=6
—4V, + 2V, =2
Solving these equations, we obtain
V.=2V and V;=5V
V,=3V,—V;=1V
RN
+ 2V +

3
=~
>
D
-/

1kQ

Figure 3.16

(a) (b)

Circuit used in Example 3.10.




SECTION 3.1 « NODAL ANALYSIS 109

We wish to find I, in the network in Fig. 3.17a. Note that this circuit contains three volt- EXAMPLE 3 . 1 1
age sources, one of which is a controlled source, and another is a controlled current source. VAYAYAN

Because two of the voltage sources are connected to the reference node, one node voltage is
known directly and one is specified by the dependent source. Furthermore, the difference in
voltage between two nodes is defined by the 6-V independent source.

The network is redrawn in Fig. 3.17b in order to label the nodes and identify the super-
node. Since the network has six nodes, five linear independent equations are needed to deter-
mine the unknown node voltages.

The two equations for the supernode are

Vl - V4 = -6
V]_12+Vl_V3+21x+V4_V3+ﬁ+V4_V5:0
1k 1k 1k 1k 1k
The three remaining equations are
V,=12
V3 = ZVX
Vs -V Vs —
+=2=2]
1k 1k *
The equations for the control parameters are
Vi=V, — 12
_Y
1k
Combining these equations yields the following set of equations:
_2‘/1 T+ 5V4 - V5 = —36
Vl - V4 = -6
_3V4 aF ZVS = 0
In matrix form, the equations are
-2 5 -1]|" -36
1 -1 0| V2a]=| =6
0 =3 21|V, 0
Vl (’\
+ +
v, 2 1k0 21k GL) 6V <l> v, 3 1k 21k C; 6V <l>
1 2, _ 1 2,
- 1kQ 1kQ Qv v
wy wY% VWA V2 wy W L Vs
1kQ e ] ko
v Cj) <+> 21k 21k0 12v<j) <j> 1kQ 21k
> ZVX >
ZVX Ix Io Ix Io

|||—
11—

(a) (®)

Figure 3.17
Circuit used in Example 3.11.
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The MATLAB solution is then

> 6 = [-25 -1;1 -1 0;0 -3 21
G =
=2 5 -1
1 -1 0
0 -3 2
>> 1 = [-36;-6;01
I =
-36
-6
0
>> V = inv(G)*I
vV =
-38.0000
-32.0000
-48.0000

Then, since V5 = 2V,, V; = —100 V. I, is —48 mA. The reader is encouraged to verify that
KCL is satisfied at every node.

STRATEGY

NODAL ANALYSIS Determine the number of nodes in the circuit. Select one node as the reference
node. Assign a node voltage between each nonreference node and the reference
node. All node voltages are assumed positive with respect to the reference
node. For an N-node circuit, there are N — 1 node voltages. As a result,

N — 1 linearly independent equations must be written to solve for the node
voltages.

Write a constraint equation for each voltage source—independent or dependent—
in the circuit in terms of the assigned node voltages using KVL. Each constraint
equation represents one of the necessary linearly independent equations, and
N, voltage sources yield N, linearly independent equations. For each dependent
voltage source, express the controlling variable for that source in terms of the
node voltages.

A voltage source—independent or dependent—may be connected between
a nonreference node and the reference node or between two nonreference nodes.
A supernode is formed by a voltage source and its two connecting nonreference
nodes.

Use KCL to formulate the remaining N — 1 — N, linearly independent equa-
tions. First, apply KCL at each nonreference node not connected to a voltage
source. Second, apply KCL at each supernode. Treat dependent current sources
like independent current sources when formulating the KCL equations. For
each dependent current source, express the controlling variable in terms of the
node voltages.
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LEARNING ASSESSMENTS

E3.11 Use nodal analysis to find I,in the circuit in Fig. E3.11. ANSWER:
20001, [ =%mA.
DN ’
N
4mAC> <$>2kQ 2mA <§>2kQ
IX IO
Figure E3.11 L
E3.12 Find V, in Fig. E3.12 using nodal analysis ANSWER:
V,=6.29V.
2mA
D)
—/
4k, )
2kQ 1,
&S W
NZ T
8mACT> < 3k0 Seko S,
Figure E3.12 o
We found that in a nodal analysis the unknown parameters are the node voltages and KCL @
was employed to determine them. Once these node voltages have been calculated, all the
branch currents in the network can easily be determined using Ohm’s law. In contrast to I—OOp
this approach, a loop analysis uses KVL to determine a set of loop currents in the circuit. Analysis

Once these loop currents are known, Ohm’s law can be used to calculate any voltages in the
network. Via network topology we can show that, in general, there are exactly B — N + 1
linearly independent KVL equations for any network, where B is the number of branches in
the circuit and N is the number of nodes. For example, if we once again examine the circuit
in Fig. 2.5, we find that there are eight branches and five nodes. Thus, the number of linearly
independent KVL equations necessary to determine all currents in the network is B — N + 1
=8 — 5 + 1 = 4. The network in Fig. 2.5 is redrawn as shown in Fig. 3.18 with four loop
currents labeled as shown. The branch currents are then determined as

@ Figure 3.18

in(0) i) Figure 2.5 redrawn with

loop currents.
il(t)CD @ §R ig(D) §R2

i) @D‘(t) i)
@ A 4 /_\ S @

Uz(t) )
17(0

i6(t) ig(1)

®
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(1) = i)
ir(1) = ix(0) — ip(2)
i3(1) = ig(?)
i4(1) = ig(1) — ic(2)
is(1) = ig(t) — ip(1)

TEN
HINT
e egdations employ the passive

sign convention.

i(1) = —ic(f)
i7() = ic(t) — ip(D)
ig(1) = —ip(1)

All the circuits we will examine in this text will be planar, which simply means that we
can draw the circuit on a sheet of paper in such a way that no conductor crosses another
conductor. If a circuit is planar, the loops are more easily identified. For example, recall in
Chapter 2 that we found that a single equation was sufficient to determine the current in a
circuit containing a single loop. If the circuit contains N independent loops, we will show (and
the general topological formula B — N + 1 can be used for verification) that N independent
simultaneous equations will be required to describe the network.

Our approach to loop analysis will mirror the approach used in nodal analysis (i.e., we will
begin with simple cases and systematically proceed to those that are more difficult). Then at
the end of this section we will outline a general strategy for employing loop analysis.

CIRCUITS CONTAINING ONLY INDEPENDENT VOLTAGE SOURCES To
begin our analysis, consider the circuit shown in Fig. 3.19. We note that this network has seven
branches and six nodes, and thus the number of linearly independent KVL equations necessary
to determine all currents in the circuitis B— N + 1 =7 — 6 + 1 = 2. Since two linearly inde-
pendent KVL equations are required, we identify two independent loops, A-B-E-F-A and B-C-
D-E-B. We now define a new set of current variables called loop currents, which can be used to
find the physical currents in the circuit. Let us assume that current i; flows in the first loop and
that current i, flows in the second loop. Then the branch current flowing from B to E through R;
is i; — i,. The directions of the currents have been assumed. As was the case in the nodal analy-
sis, if the actual currents are not in the direction indicated, the values calculated will be negative.
Applying KVL to the first loop yields

tytytuv—v, =0
KVL applied to loop 2 yields
+US2+U4+U5_U3:O

where v = ile v, = ile, v = (ll - iz)R3, Uy = i2R4, and Vs = iZRS'
Substituting these values into the two KVL equations produces the two simultaneous equa-
tions required to determine the two loop currents; that is,

(R + Ry + R3) — ir)(R3) = vy
—ij(R3) + i)(R3 + Ry + Rs) = vy,

or in matrix form

{R1+R2+R3 —R; } {{1}:[_%}

—R; R;+ R, + Rs i Us2
Figure 3.19 ) Vg
N A 1 B c
A two-loop circuit. AW @
R, + +
. <
0@ (Cnzs (Snze
R, © Rs -
VMA vIV\IA
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At this point, it is important to define what is called a mesh. A mesh is a special kind of loop
that does not contain any loops within it. Therefore, as we traverse the path of a mesh, we do not
encircle any circuit elements. For example, the network in Fig. 3.19 contains two meshes defined
by the paths A-B-E-F-A and B-C-D-E-B. The path A-B-C-D-E-F-A is a loop, but it is not a mesh.
Since the majority of our analysis in this section will involve writing KVL equations for meshes,
we will refer to the currents as mesh currents and the analysis as a mesh analysis.

Consider the network in Fig. 3.20a. We wish to find the current /,,.

We will begin the analysis by writing mesh equations. Note that there are no + and — signs
on the resistors. However, they are not needed, since we will apply Ohm’s law to each resis-
tive element as we write the KVL equations. The equation for the first mesh is

—12 + 6kl; + 6k(/;, — I,) =0
The KVL equation for the second mesh is
6k(l, — 1)) + 3k, +3=0

where I, = I, — I,.
Solving the two simultaneous equations yields /; = 5/4 mA and I, = 1/2 mA. Therefore,
I, = 3/4 mA. All the voltages and currents in the network are shown in Fig. 3.20b. Recall
from nodal analysis that once the node voltages were determined, we could check our analysis
using KCL at the nodes. In this case, we know the branch currents and can use KVL around any
closed path to check our results. For example, applying KVL to the outer loop yields
15 3

~12+ S +5+3=0

0=0
Since we want to calculate the current /,, we could use loop analysis, as shown in Fig. 3.20c.

Note that the loop current /; passes through the center leg of the network and, therefore,
I, = 1,. The two loop equations in this case are

—12 + 6k(I, + I,) + 6kI, = 0

15 3
v, + 2V v o+ 7Y
VWA—— ¢ M WW—— ¢ A
6 kQ 3kQ 2 mA 6 kO 1) LY
6 kQ 4 . 2
T T T 9 T
1zv<_> @ @ C_>3v 12v<_> k1S 2V C_)sv
I, % mA
I I
(a) (b)
6ka v 3ko
v’\/\l‘ VMA
12V Cr) L | Seka o <+> 3V
- >
IO

EXAMPLE 3.12

AUYAN
SOLUTION

Figure 3.20

Circuits used in
Example 3.12.
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and
=12+ 6k(l;, + L) + 3kl, +3 =0

Solving these equations yields I, = 3/4 mA and I, = 1/2 mA. Since the current in the
12-V source is I, + I, = 5/4 mA, these results agree with the mesh analysis.

Finally, for purposes of comparison, let us find /, using nodal analysis. The presence of
the two voltage sources would indicate that this is a viable approach. Applying KCL at the
top center node, we obtain

v,—-12 Vv, V,=3

ok ok 3k OV

and, hence,
9
V, = > A%
and then
_v,_3
=6 = qmA

Note that in this case we had to solve only one equation instead of two.

Once again, we are compelled to note the symmetrical form of the mesh equations that
describe the circuit in Fig. 3.19. Note that the coefficient matrix for this circuit is symmetrical.

Since this symmetry is generally exhibited by networks containing resistors and independ-
ent voltage sources, we can learn to write the mesh equations by inspection. In the first equa-
tion, the coefficient of i; is the sum of the resistances through which mesh current 1 flows,
and the coefficient of i, is the negative of the sum of the resistances common to mesh current
1 and mesh current 2. The right-hand side of the equation is the algebraic sum of the voltage
sources in mesh 1. The sign of the voltage source is positive if it aids the assumed direction
of the current flow and negative if it opposes the assumed flow. The first equation is KVL for
mesh 1. In the second equation, the coefficient of i, is the sum of all the resistances in mesh 2,
the coefficient of i; is the negative of the sum of the resistances common to mesh 1 and mesh
2, and the right-hand side of the equation is the algebraic sum of the voltage sources in mesh
2. In general, if we assume all of the mesh currents to be in the same direction (clockwise
or counterclockwise), then if KVL is applied to mesh j with mesh current i;, the coefficient
of 7; is the sum of the resistances in mesh j and the coefficients of the other mesh currents
(e.g., iy, i;+1) are the negatives of the resistances common to these meshes and mesh j. The
right-hand side of the equation is equal to the algebraic sum of the voltage sources in mesh j.
These voltage sources have a positive sign if they aid the current flow i; and a negative sign
if they oppose it.

EXAMPLE 3.13
YAYAN

SOLUTION

Let us write the mesh equations by inspection for the network in Fig. 3.21. Then we will use
MATLAB to solve for the mesh currents.

The three linearly independent simultaneous equations are
(4k + 6k)I; — (0], — (6k); = —6
—(0)]; + Ok + 3k)l, — Bk); =6
—(6k)l, — (3k)I, + 3k + 6k + 12k)[; =0
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or in matrix form

0 12k —3k

[IOk 0 —6k
—6k —3k 21k

Note the symmetrical form of the equations.

Dividing the equation by 1000 yields the matrix

0 12 =3||L|=]| 0.006

10 0 —6]|h {—0.006]
0 -3 2l|L

The MATLAB solution is then

>> 6 = [10 0 -6,;,0 12 -3;-6 -3 211
G =
10 0 -6
0 12 =3
-6 =5 21

>> 1 = [-0.006,0.006,;01

-0.0060
0.0060
0
>> V = inv(G)*I
V =
1.0e-003%*
-0.6757
0.4685
-0.1261
or
I, = —0.6757 mA
I, = 0.4685 mA
I; = —0.1261 mA
4 kQ Figure 3.21
vI\/\IA . . .
Circuit used in Example 3.13.
(=
6 kQ)
vI\/\IA

9 kQ

(=)0

2 C 2 ko
3kQ

CIRCUITS CONTAINING INDEPENDENT CURRENT SOURCES Just as the
presence of a voltage source in a network simplified the nodal analysis, the presence of a cur-
rent source simplifies a loop analysis. The following examples illustrate the point.
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LEARNING ASSESSMENTS

E3.13 Use mesh equations to find V, in the circuit in Fig. E3.13. ANSWER:
_ 33
6V V,= 5 V.
W
4k .
2kQ
203 ka3 v,
3V
Figure E3.13
E3.14 Find V, in Fig. E3.14 using mesh analysis. ANSWER:
3kQ 4kQ , =896V.
VMA . VI\/\IA
240 2 4k0 C;) v
6 kQ
+
3kQ
10V Cj) 6 kQ) 5 v,
8V
Figure E3.14 B

EXAMPLE 3 . 1 4 Let us find both V, and V; in the circuit in Fig. 3.22.
/N

SOLUTION  Although it appears that there are two unknown mesh currents, the current /; goes directly
through the current source and, therefore, I, is constrained to be 2 mA. Hence, only the
current /, is unknown. KVL for the rightmost mesh is

2%k, — 1) — 2 + 6kl, =0

And, of course,

I, =2X1073
These equations can be written as
—2KkI, + 8kl, =2
I, =2/k

Solving these equations for I, yields I, = 3/4kA and thus

V,,=6k12=%V
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To obtain V;, we apply KVL around any closed path. If we use the outer loop, the KVL
equation is

=V, +4kl, — 2+ 6kl, =0
And, therefore,

21
==V
Vi >
Note that since the current /; is known, the 4-k{) resistor did not enter the equation in
finding V,. However, it appears in every loop containing the current source and, thus, is

used in finding V;.

Figure 3.22

2V
v
: VWA 3 @ Circuit used in Example 3.14.
4 kQ

<
2 mA C) I L o 36k v,
2kQ

117

We wish to find V, in the network in Fig. 3.23.

Since the currents /; and I, pass directly through a current source, two of the three required
equations are

I =4x1073
L=-2x107
The third equation is KVL for the mesh containing the voltage source; that is,
4k(l; — I,) + 2k(l; — I}) + 6kl; —3 =0

These equations yield

and, hence,

>

4m

Figure 3.23
Circuit used in Example 3.15.

D
N

@ ‘gzm ‘gem
+—W— @ v,
4KkQ
2mA 2 4k0 2 )3v
' I $ +
%) >

EXAMPLE 3.15

AUYAN

SOLUTION
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What we have demonstrated in the previous example is the general approach for dealing
with independent current sources when writing KVL equations; that is, use one loop through
each current source. The number of “window panes” in the network tells us how many equa-
tions we need. Additional KVL equations are written to cover the remaining circuit elements
in the network. The following example illustrates this approach.

EXAMPLE 3.16
YN

SOLUTION

v
HINT

this<case, the 4-mA current
source is located on the boundary
between two meshes. Thus, we will
demonstrate two techniques for
dealing with this type of situation.
One is a special loop technique,
and the other is known as the
supermesh approach.

Let us find /, in the network in Fig. 3.24a.

First, we select two loop currents /; and I, such that I, passes directly through the 2-mA
source, and I, passes directly through the 4-mA source, as shown in Fig. 3.24b. Therefore,
two of our three linearly independent equations are

[, =2X%X1073

L=4x107
The remaining loop current /3 must pass through the circuit elements not covered by the two
previous equations and cannot, of course, pass through the current sources. The path for this
remaining loop current can be obtained by open-circuiting the current sources, as shown in

Fig. 3.24c. When all currents are labeled on the original circuit, the KVL equation for this
last loop, as shown in Fig. 3.24d, is

6+ 1kl + 2k(l, + L) + 2k(, + L, — I,) + 1k(I, — I,) = 0

Solving the equations yields

and, therefore,

10=11—12—13=_T4mA

Next, consider the supermesh technique. In this case, the three mesh currents are specified as
shown in Fig. 3.24e, and since the voltage across the 4-mA current source is unknown, it is
assumed to be V,. The mesh currents constrained by the current sources are

I, =2X103
L—L=4x10"
The KVL equations for meshes 2 and 3, respectively, are
2k, + 2k(l, — 1)) =V, =0
—6 + lkl; + V. + 1k(l; — 1)) =0
Adding the last two equations yields
—6 + 1kI; + 2kI, + 2k(I, — I})) + 1k(l3; — 1)) =0

Note, that the unknown voltage V, has been eliminated. The two constraint equations, together
with this latter equation, yield the desired result.

The purpose of the supermesh approach is to avoid introducing the unknown voltage
V.. The supermesh is created by mentally removing the 4-mA current source, as shown
in Fig. 3.24f. Then writing the KVL equation around the dotted path, which defines the
supermesh, using the original mesh currents as shown in Fig. 3.24e, yields

—6 + 1kls + 2k, + 2k(l, — I,) + 1k(I, — [,) = 0
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Note that this supermesh equation is the same as that obtained earlier by introducing the
voltage V..

119

6V 6V Figure 3.24
N\ 1kQ N\ 1kQ o i
\j A% Q VWA Circuits used in
Example 3.16.
) 4 mA G 4 mA
D VR
vl\/\IA vl\/\IA b
NG /
< < I < I <
@O ez ez @) @ $ @ ,
DA . 2ma T 2KOT 2kQ
(a) (b)
ev 1kQ v 1kQ
VA A /A A
S — =
10 . 1kQ L 4ma
M) (o4 lin e
O < < 2 kQ< <
2%0 3 20 3 CD I 3 L) Sk
T 2mA 1,
(© (d
6V 6V
kQ
M) L () T
D w \J:. ------- :
I3 v i I i
1kQ D— It I , ]
vI\/\IA Q vI\/\IA : E
\-/4 1kQ i !
mA 2k0 | | -
1 < 1 < I HP.
D 2Dz OOYE L) 3
2 2K L, 2mA 1! .
(e ()
LEARNING ASSESSMENTS
E3.15 Find V, in the network in Fig. E3.15. ANSWER:
Ve - v,=2v.
4 mA
D)
> A%
N 6k
2103 403 5V

Figure E3.15
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E3.16 Find V, in the network in Fig. E3.16. ANSWER:
4rA v, = 35—2 V.
D)
—/
VWA VWA
2kQ 1kQ +

2mA<D C_F>4v <§>4kﬂ v,

Figure E3.16
E3.17 Find V, in Fig. E3.17 using loop analysis. ANSWER:
3k0 4k0 V,=971V.
VWA ; VWA
20 3 2mA C;) v
6 kQ
+
3kQ
10V C_r) 6 kQ <§> v,
8V
Figure E3.17 B
E3.18 Find V, in Fig. E3.17 using mesh analysis. ANSWER:
V,=9.71V.

CIRCUITS CONTAINING DEPENDENT SOURCES We deal with circuits contain-
ing dependent sources just as we have in the past. First, we treat the dependent source as
though it were an independent source when writing the KVL equations. Then we write the
controlling equation for the dependent source. The following examples illustrate the point.

EXAMPLE 3 . 1 7 Let us find V, in the circuit in Fig. 3.25, which contains a voltage-controlled voltage source.
AYANN

SOLUTION  The equations for the loop currents shown in the figure are
V. + 2K(, + L) + 4K, = 0
—2V, + 2k, + L) — 3 + 6k, = 0

where
V, = 4kl,
These equations can be combined to produce
—2kI, + 2kl, = 0
—6kl, + 8kl, =3

In matrix form, the equations are

[—2000 2000] 1 _[0]
—6000 8000|L| L3
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The MATLAB solution is then
>> R = [-2000 2000;-6000 80001

R =
-2000 2000
-6000 8000
>> VvV = [0;3]
V =
0
3
>> I = inv(R)*V
I =
0.0015
0.0015
Or
I, =15mA
L=15mA

and, therefore,
V,=6kl, =9V

For comparison, we will also solve the problem using nodal analysis. The presence of the
voltage sources indicates that this method could be simpler. Treating the 3-V source and its
connecting nodes as a supernode and writing the KCL equation for this supernode yields

V-2V, Ve Vi+3_

% a4k ek °
where
V,=V,+3
These equations also yield V, = 9 V.
v, /3_\/\ Figure 3.25
vz'\{(\g \j N Circuit used in Example 3.17.
2%<>.TJ S 4k0 Sek v,
b _

Let us find V, in the circuit in Fig. 3.26, which contains a voltage-controlled current source. EXAMPLE 3 . 1 8
AAYA

The currents /; and I, are drawn through the current sources. Therefore, two of the equations SOLUTION
needed are

V,

X

~ 2000
L,=2x10"

1
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The KVL equation for the third mesh is
=3+ 2k(l; — 1) + 6kl; =0
where

Vi=4k (I, — 1)

Combining these equations yields

_11 + 2[2 =0
12 =S 2/k
—OKI, + 8K, = 3

In matrix form, the equations are

-1 2 0] 0
0 1 0|5 |=0.002
—2000 0 8000/|1, 3

The MATLAB solution is then

>> R =[-1 2 0;0 1 0,-2000 0 80001
R =
-1 2 0
0 1 0
-2000 0 8000
>> VvV = [0,;,0.002;31
V =
0
0.0020
3.0000
>> I = inv(R)*V
I =
0.0040
0.0020
0.0014

The actual numbers are I, = 4.0 mA, I, = 2.0 mA, and 75 = 1.375 mA, where MATLAB has
rounded off the value of ;.
And, hence, V, = 8.25 V.

Figure 3.26
Circuit used in v *
Example 3.18. Jx 1 p:

P 2000 T> ! S2ko

Vx

= +

VWA 7, l 2 6k0 v,
4kQ <

2mA C‘) I, C_st
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The network in Fig. 3.27 contains both a current-controlled voltage source and a voltage-
controlled current source. Let us use MATLAB to determine the loop currents.

The equations for the loop currents shown in the figure are
4
Il - E
Vi
B =5
=1kl + 2k(l; — I})) + k(5 — 1)) = 0
Ik(l, — L)+ 1k(l, — L) +12=0

where
V, = 2k(l; — 1))
Ix = 14 - 12
Combining these equations yields
n=2
'k
L+L—-L=0

1kl, + 3kI, — 2kI, = 8
1kI, + 1kI, — 2kI, = 12

In matrix form, the equations are

1 0 0 07| 0.004
1 1 -1 o|[L|_| o
0 1000 3000 —2000 || I 8
0 1000 1000 —2000]] 7, 12

The MATLAB solution is then

> R =[01000;1717-10;0 1000 3000 -2000,0 1000 1000 -20001
R =
1 0 0 0
1 1 =1 0
0 1000 3000 -2000
0 1000 1000 -2000
>> V = [0.004;0;8;121
V =
0.0040
0
8.0000
12.0000
Figure 3.27
<2kQ v Circuit used in
4mA<T> @ 3 @<1> - Example 3.19.
Ve _ | L
LY Y,
2kQ 1kQ

M

I, Cj) 12V
>

1kQ

2306

EXAMPLE 3.19
YAYAYAN

SOLUTION
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>> I = inv(R)*V

0.0040

-0.0060
-0.0020
-0.0100

or

I, = 4.0 mA

I, = 6.0 mA

13 = _2.0 mA

I, = —1.0mA

EXAMPLE 3.20
YAYAN

At this point, we will again examine the circuit in Example 3.10 and analyze it using loop
equations. Recall that because the network has two voltage sources, the nodal analysis was
somewhat simplified. In a similar manner, the presence of the current sources should simplify
a loop analysis.

Clearly, the network has four loops, and thus four linearly independent equations are required
to determine the loop currents. The network is redrawn in Fig. 3.28 where the loop currents are
specified. Note that we have drawn one current through each of the independent current sources.
This choice of currents simplifies the analysis since two of the four equations are

I, =2/k
L=-2/k
The two remaining KVL equations for loop currents /, and I, are
=2V, + 1k, + (I, — )1k =0
Uy +L—1I)lk =2V, + 1kl, +4 =0
where
Vi=1k(, — L — 1)
Substituting the equations for /; and /5 into the two KVL equations yields

2kl, + 2kl, = 6
4kl, = 8
Solving these equations for /, and /,, we obtain
I, =2 mA
I, = 1 mA
and thus
V,=1V
Figure 3.28

Circuit used in ' ‘ J
Example 3.20. 2v, <j> @VO 21kQ S1kQ

=[N
>
(D)
_/
Q.
+
- <
52
|
o~

Vx<$>1 m@ CT)%A Cj>4v
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Let us once again consider Example 3.11. In this case, we will examine the network using
loop analysis. Although there are four sources, two of which are dependent, only one of them
is a current source. Thus, from the outset we expect that a loop analysis will be more difficult
than a nodal analysis. Clearly, the circuit contains six loops. Thus, six linearly independent
equations are needed to solve for all the unknown currents.
The network is redrawn in Fig. 3.29 where the loops are specified. The six KVL equa-
tions that describe the network are
1k, + 1k(l, — L) + 1k(l;, — 1) =0
I; =21,
—12 + 1k(l, — I}) + 2V, =0
=2V, + 1k(ls — I,) + 1k(Is — 1)) = 0
1k(I, — I5) + 1k(I, — I3) + 1kI, = 0
The control variables for the two dependent sources are

V. = — 1K/,
Ix :IS _ID

Substituting the control parameters into the six KVL equations yields

3, -L, 0 -, 0 0 =0
I, +2, 0 0 —I, 0 = 6k
0 0 L 0 —2I +2I, =
-3, 0 0 +I, 0 0 =12/
€A, —-L, 0 0 +20, —I, =
0 0 0 0 -3 +5 = 0

In matrix form, the equations are

3—-1 0—-1 0 O I 0
-1 2 0 0-1 0 L 0.006
0O 0 1 0-2 2 L = |0
-3 0 0 1 0 O I 0.012
2—-1 0 0 2 -1 Is 0
0O 0 0 0-3 5 Is 0
Figure 3.29
* l1ko 1kQ 6V Circuit used in
V.3 C p3 C CI) C <l>21x Example 3.21.
> 1 S 5 A
—V\ VWA W\ ———
1kQ 1kQ 1kQ
J1ka J
~OCHE TE
2V,
I, I,

EXAMPLE 3.21
YAYAYAN
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The MATLAB solution is then

> R =[3-10-1020,;-1200-170;,0010-22;,-3001
0 0;,2-1002-1,0000 -3 51

R =
3 =1 0 =1 0 0
=1 2 0 0 Sl 0
0 0 1 0 -2 2
= 0 0 1 0 0
2 =1 0 0 2 =1
0 0 0 0 -3 5
>> V = [0,;,0.006,;0,;0.012;0;01
V =
0
0.0060
0
0.0120
0
0
>> I = inv(R)*V
i =
0.0500
-0.0120
-0.0640
0.1620
-0.0800
-0.0480
or
I, = 50.0 mA
I, = —12.0 mA
I; = —64.0 mA
I, = 162.0 mA
I = —80.0 mA
I, = —48.0 mA

As a final point, it is very important to examine the circuit carefully before selecting an
analysis approach. One method could be much simpler than another, and a little time invested
up front may save a lot of time in the long run. For an N-node circuit, N — 1 linearly inde-
pendent equations must be formulated to solve for N — 1 node voltages. An N-loop circuit
requires the formulation of N linearly independent equations. One consideration in the selec-
tion of a method should be the number of linearly independent equations that must be for-
mulated. The same circuit was solved in Example 3.10 using nodal analysis and in Example
3.20 using loop analysis. The circuit in Fig. 3.16 has four unknown node voltages. As a result,
four linearly independent equations are required. Because there are two voltage sources, two
constraint equations are needed. It was pointed out in Example 3.20 that this same circuit
has four loops, which requires four linearly independent equations. The two current sources
produce two constraint equations.

The effort required to solve this circuit using either nodal or loop analysis is similar.
However, this is not true for many circuits. Consider the circuit in Fig. 3.30. This circuit has
eight loops. Selection of the loop currents such that only one loop current flows through the
independent current source leaves us with seven unknown loop currents. Since this circuit
has seven nodes, there are six node voltages, and we must formulate six linearly independent
equations. By judicious selection of the bottom node as the reference node, four of the node
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20V j) 240 C)ZA 240 16V j) 12V i) 302 60
> >

VWA
0
N
o
<

Figure 3.30

A circuit utilized in a discussion of the selection of an analysis technique.

voltages are known, leaving just two unknown node voltages—the node voltage across the
current source and the node voltage across the 3-Q) and 6-() resistors. Applying KCL at these
two nodes yields two equations that can be solved for the two unknown node voltages. Even
with the use of a modern calculator or a computer program such as MATLAB, the solution
of two simultaneous equations requires less effort than the solution of the seven simultaneous
equations that the loop analysis would require.

LN

[PROBLEM-SOLVING STRATEGY

STEP 1. Determine the number of independent loops in the circuit. Assign a loop current to LOOP ANALYSIS
each independent loop. For an N-loop circuit, there are N-loop currents. As a result,
N linearly independent equations must be written to solve for the loop currents.
If current sources are present in the circuit, either of two techniques can be
employed. In the first case, one loop current is selected to pass through one of the
current sources. The remaining loop currents are determined by open-circuiting
the current sources in the circuit and using this modified circuit to select them.
In the second case, a current is assigned to each mesh in the circuit.

STEP 2. Write a constraint equation for each current source—independent or dependent—in
the circuit in terms of the assigned loop current using KCL. Each constraint equa-
tion represents one of the necessary linearly independent equations, and N current
sources yield Nj linearly independent equations. For each dependent current source,
express the controlling variable for that source in terms of the loop currents.

STEP 3. Use KVL to formulate the remaining N — N linearly independent equations. Treat
dependent voltage sources like independent voltage sources when formulating the
KVL equations. For each dependent voltage source, express the controlling vari-
able in terms of the loop currents.

LEARNING ASSESSMENTS

E3.19 Use mesh analysis to find V, in the circuit in Fig. E3.19. ANSWER:
v V,=12V.
2kQ N\
VWA +
N +
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E3.20 Use loop analysis to solve the network in Example 3.5 and compare the time and effort involved in the two solution techniques.

E3.22 Find V, in Fig. E3.22 using mesh analysis. ANSWER:
3kQ 4kQ V, =0697V.
va . VMA

2k0 2 4kQ C;)nv

E3.23 Find V, in Fig. E3.23 using mesh analysis. ANSWER:
3k 4kQ Vo=9V.
v’\/\l‘ v’\/\l‘
ke o5l <l> C;) 12V
6 kQ
v’\/\l‘
< +
3kQ
10V Ci) ska v,
8V
. 1.4 _
Figure E3.23 :
SUMMARY
Nodal Analysis for an N-node Circuit between two nonreference nodes. A supernode is formed by a
B Determine the number of nodes in the circuit. Select one node voltage source and its two connecting nonreference nodes.
as the reference node. Assign a node voltage between each m Use KCL to formulate the remaining N — 1 — N, linearly
nonreference node and the reference node. All node voltages independent equations. First, apply KCL at each nonreference
are assumed positive with respect to the reference node. For node not connected to a voltage source. Second, apply KCL at
an N-node circuit, there are N — 1 node voltages. As a result, each supernode. Treat dependent current sources like indepen-
N — 1 linearly independent equations must be written to dent current sources when formulating the KCL equations. For
solve for the node voltages. each dependent current source, express the controlling variable

. . . in terms of the node voltages.
B Write a constraint equation for each voltage source—

independent or dependent—in the circuit in terms of the Loop Analysis for an N-loop Circuit

assigned node voltages using KVL. Each constraint equation @ Determine the number of independent loops in the circuit.
represents one of the necessary linearly independent equations, Assign a loop current to each independent loop. For an

and N, voltage sources yield N, linearly independent equa- N-loop circuit, there are N-loop currents. As a result,

tions. For each dependent voltage source, express the control- N linearly independent equations must be written to solve for
ling variable for that source in terms of the node voltages. the loop currents.

A voltage source—independent or dependent—may be con- @ If current sources are present in the circuit, either of two tech-
nected between a nonreference node and the reference node or niques can be employed. In the first case, one loop current



is selected to pass through one of the current sources. The
remaining loop currents are determined by open-circuiting the
current sources in the circuit and using this modified circuit
to select them. In the second case, a current is assigned to
each mesh in the circuit.
Write a constraint equation for each current source—
independent or dependent—in the circuit in terms of the
assigned loop currents using KCL. Each constraint equa-
tion represents one of the necessary linearly independent

PROBLEMS

12 mA CD

2 4kQ

3.1 Use nodal analysis to find V; in the circuit in Fig. P3.1.
10 kQ 5kQ
VWA VWA
+
< <
skagv, S 4k

Figure P3.1

3.2 Find both 7, and V, in the network in Fig. P3.2 using nodal analysis.
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equations, and N, current sources yield N, linearly indepen-
dent equations. For each dependent current source, express
the controlling variable for that source in terms of the loop
currents.

Use KVL to formulate the remaining N — N, linearly inde-
pendent equations. Treat dependent voltage sources like
independent voltage sources when formulating the KVL
equations. For each dependent voltage source, express the
controlling variable in terms of the loop currents.

Figure P3.4

6 kQ
A%
< + v -
2mA CD 3k0 3 ’ Q amA 312Kk
ID
Figure P3.2
3.3 Find /; in the network in Fig. P3.3. 3.5 Use nodal analysis to find V| in the circuit in Fig P3.5.
D) 2k0
N W
6 mA + 6 mA
< < < < m
6k0.2 2oz 2 4k0 34k 3k02 v, 2k0 22k0
I, 4 mA
Figure P3.3 Figure P3.5
3.6 Find V, and V, in the circuit in Fig. P3.6 using nodal analysis.
D
3.4 Find I, in the circuit in Fig. P3.4. —/
6 mA
D)
—/ .
2mA CD e[ S4k0 Q 4mA
< <
4mACT> v,26k2 1,3 3k0 2 6ko
I - -

Figure P3.6
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3.7 Use nodal analysis to find both V, and V, in the circuit in Fig P3.7. 3.11 Use nodal analysis to find /, in the network in

N Fig. P3.11.
/ 2mA
2mA Q
v v —/
1 2
VWA VWA
6 kO 2k0 + 4mA<‘> 402
>
< <
<>12mA 23k 26ko 2k,
> > > <
2k S VWA
- 1 4kQ
y <
Figure P3.7 6 mA C) 12kQ 5
I()
3.8 Write the node equations for the circuit in Fig. P3.8 in matrix
form, and find all the node voltages. Figure P3.11
3mA
()
-/
3.12 Use nodal analysis to find V, in the circuit in
1kQ v, 3kQ Fig. P3.12.
V v A v A V
! W W ’ 6 kQ 3kQ
A% A%
<
22k0 C) 6mA 24k +
> >

Figure P3.8 Figure P3.12

3.9 Find V, in the network in Fig. P3.9.

V

3.13 Find V, in the network in Fig. P3.13 using nodal
4mA CD 22k CD 2mA analysis.
> + Vo _
vI\/\IA vI\/\IA
1kQ 1kQ +
< <
o3 Mm@y, . A
> >
6 kQ 12kQ
v CJ_D 26ka CJ_D 6V
>
Figure P3.9
3.10 Find 1, in the circuit in Fig. P3.10 using nodal analysis. Figure P3.13
vI\/\IA
8 kO
2k 3, ZmA Cl) 3.14 Use nodal analysis to find V, in the circuit in Fig. P3.14.
2kQ 4kQ
1 mA CTD VI\/\IA vl\/v\ vI\/\IA
3kQ
+ 4 3
k2 3 12v<_> C)ZmA S 2k0
I()

Figure P3.10 Figure P3.14



3.15 Find /, in the network in Fig. P3.15 using nodal analysis.

o

1kQ
VWA
1kQ 2k 1,
VWA VWA
4mA CT) C:D 6V
Figure P3.15

3.16 Use nodal analysis to find V, in the circuit in Fig. P3.16.

Yo

2kQ 6 kQ
WA WA
+
< <
12 kQ 5 3kQ 5
1%

6mA<

ov ()

Figure P3.

3.17 Use nodal analysis to find V, in the network in Fig. P3.17.

16

4kQ 3 mA 2k0
AW D AW
/

2k0 S

G

‘gekn

%11@

Figure P3.17

3.18 Use nodal analysis to find V, in the circuit in Fig. P3.18.

12V Cj)

gzkn

gskn

Figure P3.

4kQ 6kQ
v’\/\l‘ v’\/\l‘
<
6 kQ 5
+ VO -
v’\/\l‘
4kQ
8ka 3
18

V()
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3.19 Find V, in the circuit in Fig. P3.19 using nodal analysis.

+
1k 3 CD 2mA
VWA 5 2kQ Vo
2kO 1
12V Ct) 21k0
Figure P3.19

3.20 Find V, in the network in Fig. P3.20 using nodal analysis.

%S (DHnv
2k0
CD 4mA A
+
102 240 2 v,
Figure P3.20

3.21 Find V, in the network in Fig. P3.21 using nodal analysis.

2k

O

sma(])

VWA

2k

Ci 4V

VWA

2k

V%A

Figure P3.21

1kQ
vI\/\IA
4v
2kQ
WO
Ci)nv <5»11@ CI)ev
1

Figure P3.22

3.22 Find /, in the circuit in Fig. P3.22 using nodal analysis.
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3.23 Use nodal analysis to determine the node voltages defined in
the circuit in Fig. P3.23.

i

Dsm

05ms < 2V CJD
V3
V, VWA VWA
2mS 1mS

v,

Figure P3.23

05 mS% CPsmA Cj 12V
L

3.24 Use nodal analysis to find V, in the network in

Fig. P3.24.

21kQ

1kQ V.

s 22k
WA VWA
2kQ 1kQ

12V CJ_D C) 2mA
Figure P3.24

——— AN
g

3.25 Use nodal analysis to find V, in the circuit in Fig. P3.25.

1kQ

oL

1kQ

M\
N,
12V

§1k9

Figure P3.25

+

V

o

3.26 Use nodal analysis to solve for the node voltages in the
circuit in Fig. P3.26. Also calculate the power supplied

by the 1-A current source.

2A
/R
_/
120 60
VA YWA——9¢
. : ®
48V<7> 40 5, 1A
Figure P3.26

3.27 Find V, in the network in Fig. P3.27 using nodal equations.

-

VW
-~

1kQ
A%
1kQ 2mA
VWA
6V Ci) 1k 1kQ
Figure P3.27

3.28 Find /, in the network in Fig. P3.28 using nodal analysis.

4KkQ
VWA
3kQ Z/TQ
W N,
12v<i> 6k9<§ 220
>
1(7
Figure P3.28

3.29 Use nodal analysis to find /, in the circuit in Fig. P3.29.

2kQ
WA
2mA 4 mA
E+8
12V Ci) 2kQ 5
ID

22k

Figure P3.29



3.30 Find V, in the circuit in Fig. P3.30 using nodal analysis.

6 mA
12 kQ)
o—
6 kO 4 mA
ok )
_/
+
v C;) VoS 4k C_Dc;v
Figure P3.30

3.31 Find /, in the circuit in Fig. P3.31 using nodal analysis.
6V

6 kO 6k
(O
2 6ko 2 12k0 2 12ko 2 6k
10

Figure P3.31

3.32 Use nodal analysis to find /, in the circuit in Fig. P3.32.

v
6k /6\ 12k0
Y, - WA
-/
+ < i
3v<_> Snko S6k0 <+>3v
10
Figure P3.32

3.33 Using nodal analysis, find V, in the network in Fig. P3.33.

3V
)
/
4kQ 2k
VWA VWA
+
6V<ir> 2 mA CD éGkQ v,

Figure P3.33

3.34 Find V, in the network in Fig. P3.34 using nodal analysis.
12V

3k0 4kQ
VI\/\IA @ V%A
+
6th> 240 Vv,26k0 S2k0

Figure P3.34
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3.35 Find V, in the circuit in Fig. P3.35 using nodal analysis.

12kQ
W
6k AL
w00
), N
1zv<j> 23k0 ek v,
> >
I, _

Figure P3.35

3.36 Find V, in the circuit in Fig. P3.36 using nodal analysis.

6V
)
—/
2mA 6 k)
m VMA
+
< <
Sk S12k0 Sake vy,
Figure P3.36

3.37 Use nodal analysis to find V, in the circuit in Fig. P3.37.
12V

()
/

6 kQ) v
v O
/

S 4ko C)émA Sea v,

Figure P3.37

3.38 Find V, in the circuit in Fig. P3.38 using nodal analysis.

4 kQ
VWA

6V
VWA — VWA
—/

< <
6V<ﬁ> Sk Snko §4k9

Figure P3.38
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3.39 Find V, in the circuit in Fig. P3.39 using nodal analysis. 3.44 Find I, in the network in Fig. P3.44 using nodal analysis.
12V 1 kQ 1kQ 1,
AR VWA VWA
-/
T)nv CD 2mA -
2kQ 1kQ C* ! 4 4
A% A%
+
p — p Figure P3.44
S1ko <+>6V S1ke v,
Figure P3.39 3.45 Find V, in the network in Fig. P3.45 using nodal
. . L analysis.
3.40 Use nodal analysis to find V,, in the circuit in Fig. P3.40.
1kQ
A%
+
J 2kQ 2k0
v VWA VWA
6kQ §> / O
<i> 2v, CD 2mA S Y,
Figure P3.40 -
3.41 Find V, in the network in Fig. P3.41. Figure P3.45
< + <
S2k0 C_ sv  (H)nv S1k0 3.46 Find V, in the circuit in Fig. P3.46 using nodal
analysis.
2kQ
W (—e 1k
+ VA
2V /W
22k0 T)av 1kQ 21k v 41
&3 <+> 3 o I, 1kQ AN
VI\/\IA —
_ < Y
Figure P3.41 Cj v 21k St Y,
>
3.42 Find [, in the network in Fig. P3.42 using nodal analysis. B
1kQ 1kQ
W W\ Figure P3.46
+ v, ~
<
Cj)nv 5,2 kQ <t> 2V,
1, 3.47 Find [, in the network in Fig. P3.47 using nodal analysis.
Figure P3.42 I
o
3.43 Find V, in the network in Fig. P3.43 using nodal analysis. 1 kﬂg % 1kQ
>
12V 4v,
A () N G) 6V
/ Y A4 -
1kQ + +

Vv < < <
7<i> gzm §1k9 v, 2mA CD lkﬂévx

Figure P3.43 Figure P3.47



3.48 Use nodal analysis to find V, in the circuit in Fig. P3.48.

10V,
&
6 kO 12mA
W0
" +
k03 10, Ssko v,
Figure P3.48
3.49 Find V, in the network in Fig. P3.49 using nodal
analysis.
+
< <
Qg Qg
oy 2k,
1kQ i
17V CJ_FD <T> 21, I,
Figure P3.49
3.50 Find V, in the network in Fig. P3.50 using nodal
analysis.
+

O (o

LA 21k v,
>

o

1kQ

VWA

Figure P3.50

3.5