Bu çalışma göz kırpma, göz yorgunluğu, sürücü uyuşukluğu gibi temel problemlerin çözümlenmesinde önemli olan göz durumu tespitine odaklanmaktadır. Bu çalışmada, göz durumu tespiti için görüntü önişlem yöntemleri ve derin öğrenme tabanlı evrişimsel sinir ağına (ESA) dayanan bir yöntem önerilmiş ve önerilen yöntem ZJU veri seti üzerinde performansı test edilmiştir. Ayrıca, önerilen ESA modelinde farklı havuzlama katmanları değerlendirilmiş ve ZJU veriseti üzerinde elde edilen bulgularda ortalama havuzlama kullanılan önerilen ESA modelinin en iyi performansı elde ettiği görülmüştür. Sonrasında, ZJU veri setine görüntü ön işlem yöntemleri uygulanmış ve işlenmiş ZJU veri seti, önerilen ESA modelinde eğitilerek performansları karşılaştırılmıştır. Elde edilen sonuçlara göre histogram eşitleme yöntemi kullanılarak eğitimi gerçekleştirilen ESA modelinin ZJU veri setinde %94.32 doğruluk, %94.95 duyarlılık, %92.42 özgüllük, %97.41 kesinlik ve %96.16 F1 skor performans metrikleri ile üstün bir başarı elde ettiği görülmüştür. Bu çalışmada elde edilen sonuçlar, ZJU veri setinde yapılan önceki çalışmalarda sunulan performans metrikleri ile karşılaştırılmıştır. Önerilen yöntemin literatür ile karşılaştırıldığında, göz durumu tespitinde güçlü sınıflandırma performansına sahip olduğu tespit edilmiştir.

Link: https://dergipark.org.tr/tr/pub/ngumuh/issue/71284/1086414

Cite this article

Kayadibi, İ. , Güraksın, G. E. & Ergün, U. (2022). ESA tabanlı göz durumu tespitinde görüntü önişlem yöntemlerinin etkisi. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, 11 (3), 496-505. DOI: 10.28948/ngumuh.1086414